1,061 research outputs found

    Multicolored quantum dimer models, resonating valence-bond states, color visons, and the triangular-lattice t_2g spin-orbital system

    Full text link
    The spin-orbital model for triply degenerate t_2g electrons on a triangular lattice has been shown to be dominated by dimers: the phase diagram contains both strongly resonating, compound spin-orbital dimer states and quasi-static, spin-singlet valence-bond (VB) states. To elucidate the nature of the true ground state in these different regimes, the model is mapped to a number of quantum dimer models (QDMs), each of which has three dimer colors. The generic multicolored QDM, illustrated for the two- and three-color cases, possesses a topological color structure, "color vison" excitations, and broad regions of resonating VB phases. The specific models are analyzed to gain further insight into the likely ground states in the superexchange and direct-exchange limits of the electronic Hamiltonian, and suggest a strong tendency towards VB order in all cases.Comment: 16 pages, 12 figure

    Phase Separation, Competition, and Volume Fraction Control in NaFe1−x_{1-x}Cox_xAs

    Full text link
    We report a detailed nuclear magnetic resonance (NMR) study by combined 23^{23}Na and 75^{75}As measurements over a broad range of doping to map the phase diagram of NaFe1−x_{1-x}Cox_xAs. In the underdoped regime (x≤x \le 0.017), we find a magnetic phase with robust antiferromagnetic (AFM) order, which we denote the {\it s}-AFM phase, cohabiting with a phase of weak and possibly proximity-induced AFM order ({\it w}-AFM) whose volume fraction V≃8V \simeq 8\% is approximately constant. Near optimal doping, at x=0.0175x = 0.0175, we observe a phase separation between static antiferromagnetism related to the {\it s}-AFM phase and a paramagnetic (PM) phase related to {\it w}-AFM. The volume fraction of AFM phase increases upon cooling, but both the N{\'e}el temperature and the volume fraction can be suppressed systematically by applying a cc-axis magnetic field. On cooling below TcT_c, superconductivity occupies the PM region and its volume fraction grows at the expense of the AFM phase, demonstrating a phase separation of the two types of order based on volume exclusion. At higher dopings, static antiferromagnetism and even critical AFM fluctuations are completely suppressed by superconductivity. Thus the phase diagram we establish contains two distinct types of phase separation and reflects a strong competition between AFM and superconducting phases both in real space and in momentum space. We suggest that both this strict mutual exclusion and the robustness of superconductivity against magnetism are consequences of the extreme two-dimensionality of NaFeAs.Comment: 12 pages, 6 figure

    Electronic and magnetic excitations in the "half-stuffed" Cu--O planes of Ba2_2Cu3_3O4_4Cl2_2 measured by resonant inelastic x-ray scattering

    Full text link
    We use resonant inelastic x-ray scattering (RIXS) at the Cu L3_3 edge to measure the charge and spin excitations in the "half-stuffed" Cu--O planes of the cuprate antiferromagnet Ba2_2Cu3_3O4_4Cl2_2. The RIXS line shape reveals distinct contributions to the dddd excitations from the two structurally inequivalent Cu sites, which have different out-of-plane coordinations. The low-energy response exhibits magnetic excitations. We find a spin-wave branch whose dispersion follows the symmetry of a CuO2_2 sublattice, similar to the case of the "fully-stuffed" planes of tetragonal CuO (T-CuO). Its bandwidth is closer to that of a typical cuprate material, such as Sr2_2CuO2_2Cl2_2, than it is to that of T-CuO. We interpret this result as arising from the absence of the effective four-spin inter-sublattice interactions that act to reduce the bandwidth in T-CuO.Comment: 10 pages, 8 figure

    Field- and pressure-induced magnetic quantum phase transitions in TlCuCl_3

    Full text link
    Thallium copper chloride is a quantum spin liquid of S = 1/2 Cu^2+ dimers. Interdimer superexchange interactions give a three-dimensional magnon dispersion and a spin gap significantly smaller than the dimer coupling. This gap is closed by an applied hydrostatic pressure of approximately 2kbar or by a magnetic field of 5.6T, offering a unique opportunity to explore the both types of quantum phase transition and their associated critical phenomena. We use a bond-operator formulation to obtain a continuous description of all disordered and ordered phases, and thus of the transitions separating these. Both pressure- and field-induced transitions may be considered as the Bose-Einstein condensation of triplet magnon excitations, and the respective phases of staggered magnetic order as linear combinations of dimer singlet and triplet modes. We focus on the evolution with applied pressure and field of the magnetic excitations in each phase, and in particular on the gapless (Goldstone) modes in the ordered regimes which correspond to phase fluctuations of the ordered moment. The bond-operator description yields a good account of the magnetization curves and of magnon dispersion relations observed by inelastic neutron scattering under applied fields, and a variety of experimental predictions for pressure-dependent measurements.Comment: 20 pages, 17 figure

    Quantum and classical criticality in a dimerized quantum antiferromagnet

    Get PDF
    A quantum critical point (QCP) is a singularity in the phase diagram arising due to quantum mechanical fluctuations. The exotic properties of some of the most enigmatic physical systems, including unconventional metals and superconductors, quantum magnets, and ultracold atomic condensates, have been related to the importance of the critical quantum and thermal fluctuations near such a point. However, direct and continuous control of these fluctuations has been difficult to realize, and complete thermodynamic and spectroscopic information is required to disentangle the effects of quantum and classical physics around a QCP. Here we achieve this control in a high-pressure, high-resolution neutron scattering experiment on the quantum dimer material TlCuCl3. By measuring the magnetic excitation spectrum across the entire quantum critical phase diagram, we illustrate the similarities between quantum and thermal melting of magnetic order. We prove the critical nature of the unconventional longitudinal ("Higgs") mode of the ordered phase by damping it thermally. We demonstrate the development of two types of criticality, quantum and classical, and use their static and dynamic scaling properties to conclude that quantum and thermal fluctuations can behave largely independently near a QCP.Comment: 6 pages, 4 figures. Original version, published version available from Nature Physics websit

    g-on Mean Field Theory of the t-J Model

    Full text link
    Implication of our recent proposal [J. Phys. Soc. Jpn. 65 (1996) 687] to treat large-amplitude gauge-field fluctuations around the slave-boson mean-field theory for the t-J model has been explored in detail. By attaching gauge flux to spinons and holons and then treating them as free g-on's which respect the time-reversal symmetry, the optimum exclusion (g) and exchange (\a) statistics have been determined in the plane of doping rate and temperature. Two different relations between \a and g have been investigated, namely g=|\a| (Case1) and g=|\a|(2-|\a|) (Case2). The results indicate that slave fermion is favored at low doping while slave boson at high doping. For two dimension, in Case1 intermediate statistics are found in between, while in Case2 no intermediate statistics are found. The consequences of varying the dimensionality and strength of J have been studied also. The latter has no qualitative effect for both cases, while the former has a profound effect in Case1.Comment: 18 pages, 11 figures two of them are figure 8; submitted to Phys. Rev. B; notes and citations are added, as seen in page 17; E-mails: [email protected], [email protected]

    High-dimensional fractionalization and spinon deconfinement in pyrochlore antiferromagnets

    Full text link
    The ground states of Klein type spin models on the pyrochlore and checkerboard lattice are spanned by the set of singlet dimer coverings, and thus possess an extensive ground--state degeneracy. Among the many exotic consequences is the presence of deconfined fractional excitations (spinons) which propagate through the entire system. While a realistic electronic model on the pyrochlore lattice is close to the Klein point, this point is in fact inherently unstable because any perturbation ϵ\epsilon restores spinon confinement at T=0T = 0. We demonstrate that deconfinement is recovered in the finite--temperature region ϵ≪T≪J\epsilon \ll T \ll J, where the deconfined phase can be characterized as a dilute Coulomb gas of thermally excited spinons. We investigate the zero--temperature phase diagram away from the Klein point by means of a variational approach based on the singlet dimer coverings of the pyrochlore lattices and taking into account their non--orthogonality. We find that in these systems, nearest neighbor exchange interactions do not lead to Rokhsar-Kivelson type processes.Comment: 19 page
    • …
    corecore