197 research outputs found

    Construction and On-site Performance of the LHAASO WFCTA Camera

    Full text link
    The focal plane camera is the core component of the Wide Field-of-view Cherenkov/fluorescence Telescope Array (WFCTA) of the Large High-Altitude Air Shower Observatory (LHAASO). Because of the capability of working under moonlight without aging, silicon photomultipliers (SiPM) have been proven to be not only an alternative but also an improvement to conventional photomultiplier tubes (PMT) in this application. Eighteen SiPM-based cameras with square light funnels have been built for WFCTA. The telescopes have collected more than 100 million cosmic ray events and preliminary results indicate that these cameras are capable of working under moonlight. The characteristics of the light funnels and SiPMs pose challenges (e.g. dynamic range, dark count rate, assembly techniques). In this paper, we present the design features, manufacturing techniques and performances of these cameras. Finally, the test facilities, the test methods and results of SiPMs in the cameras are reported here.Comment: 45 pages, 21 figures, articl

    A Conserved Cysteine Motif Is Critical for Rice Ceramide Kinase Activity and Function

    Get PDF
    Ceramide kinase (CERK) is a key regulator of cell survival in dicotyledonous plants and animals. Much less is known about the roles of CERK and ceramides in mediating cellular processes in monocot plants. Here, we report the characterization of a ceramide kinase, OsCERK, from rice (Oryza sativa spp. Japonica cv. Nipponbare) and investigate the effects of ceramides on rice cell viability.OsCERK can complement the Arabidopsis CERK mutant acd5. Recombinant OsCERK has ceramide kinase activity with Michaelis-Menten kinetics and optimal activity at 7.0 pH and 40°C. Mg2+ activates OsCERK in a concentration-dependent manner. Importantly, a CXXXCXXC motif, conserved in all ceramide kinases and important for the activity of the human enzyme, is critical for OsCERK enzyme activity and in planta function. In a rice protoplast system, inhibition of CERK leads to cell death and the ratio of added ceramide and ceramide-1-phosphate, CERK's substrate and product, respectively, influences cell survival. Ceramide-induced rice cell death has apoptotic features and is an active process that requires both de novo protein synthesis and phosphorylation, respectively. Finally, mitochondria membrane potential loss previously associated with ceramide-induced cell death in Arabidopsis was also found in rice, but it occurred with different timing.OsCERK is a bona fide ceramide kinase with a functionally and evolutionarily conserved Cys-rich motif that plays an important role in modulating cell fate in plants. The vital function of the conserved motif in both human and rice CERKs suggests that the biochemical mechanism of CERKs is similar in animals and plants. Furthermore, ceramides induce cell death with similar features in monocot and dicot plants

    Does or did the supernova remnant Cassiopeia A operate as a PeVatron?

    Full text link
    For decades, supernova remnants (SNRs) have been considered the prime sources of Galactic Cosmic rays (CRs). But whether SNRs can accelerate CR protons to PeV energies and thus dominate CR flux up to the knee is currently under intensive theoretical and phenomenological debate. The direct test of the ability of SNRs to operate as CR PeVatrons can be provided by ultrahigh-energy (UHE; Eγ≥100E_\gamma \geq 100~TeV) γ\gamma-rays. In this context, the historical SNR Cassiopeia A (Cas A) is considered one of the most promising target for UHE observations. This paper presents the observation of Cas A and its vicinity by the LHAASO KM2A detector. The exceptional sensitivity of LHAASO KM2A in the UHE band, combined with the young age of Cas A, enabled us to derive stringent model-independent limits on the energy budget of UHE protons and nuclei accelerated by Cas A at any epoch after the explosion. The results challenge the prevailing paradigm that Cas A-type SNRs are major suppliers of PeV CRs in the Milky Way.Comment: 11 pages, 3 figures, Accepted by the APJ

    Measurement of ultra-high-energy diffuse gamma-ray emission of the Galactic plane from 10 TeV to 1 PeV with LHAASO-KM2A

    Full text link
    The diffuse Galactic γ\gamma-ray emission, mainly produced via interactions between cosmic rays and the interstellar medium and/or radiation field, is a very important probe of the distribution, propagation, and interaction of cosmic rays in the Milky Way. In this work we report the measurements of diffuse γ\gamma-rays from the Galactic plane between 10 TeV and 1 PeV energies, with the square kilometer array of the Large High Altitude Air Shower Observatory (LHAASO). Diffuse emissions from the inner (15∘<l<125∘15^{\circ}<l<125^{\circ}, ∣b∣<5∘|b|<5^{\circ}) and outer (125∘<l<235∘125^{\circ}<l<235^{\circ}, ∣b∣<5∘|b|<5^{\circ}) Galactic plane are detected with 29.1σ29.1\sigma and 12.7σ12.7\sigma significance, respectively. The outer Galactic plane diffuse emission is detected for the first time in the very- to ultra-high-energy domain (E>10E>10~TeV). The energy spectrum in the inner Galaxy regions can be described by a power-law function with an index of −2.99±0.04-2.99\pm0.04, which is different from the curved spectrum as expected from hadronic interactions between locally measured cosmic rays and the line-of-sight integrated gas content. Furthermore, the measured flux is higher by a factor of ∼3\sim3 than the prediction. A similar spectrum with an index of −2.99±0.07-2.99\pm0.07 is found in the outer Galaxy region, and the absolute flux for 10≲E≲6010\lesssim E\lesssim60 TeV is again higher than the prediction for hadronic cosmic ray interactions. The latitude distributions of the diffuse emission are consistent with the gas distribution, while the longitude distributions show clear deviation from the gas distribution. The LHAASO measurements imply that either additional emission sources exist or cosmic ray intensities have spatial variations.Comment: 12 pages, 8 figures, 5 tables; accepted for publication in Physical Review Letters; source mask file provided as ancillary fil

    Protective mechanisms of medicinal plants targeting hepatic stellate cell activation and extracellular matrix deposition in liver fibrosis

    Get PDF

    Myricetin Inhibits Photodegradation of Profenofos in Water: Pathways and Mechanisms

    No full text
    Profenofos is a detectable insecticide in the environment with strong toxicity to non-targeted organisms. Photodegradation is a main transformation of profenofos in the environment. Myricetin is a flavonoid that strongly scavenges free radicals. The effect of myricetin on the photodegradation of profenofos was studied. The half-lives (T1/2) of profenofos were 1.7–7.0 and 90 h under artificial light and sunlight. The photolysis rate of profenofos decreased by 1.87–4.72 and 7.62 times with the addition of 20 ratios of myricetin. Free radicals reacting with profenofos were •OH and 1O2, and the key free radical was •OH. Myricetin strongly scavenged •OH and 1O2 which rapidly reacted with profenofos. O-(2-Chlorophenyl)-O-ethyl-S-propyl phosphorothioate (M3) and O-(2-chlorophenyl)-O-ethyl phosphorothioate (M4) were major and new photoproducts of profenofos. According to the Ecological Structure Activity Relationships, photodegradation of profenofos was a detoxification process, but myricetin inhibited the photodegradation of profenofos and its photoproducts. These results highlight the implication of myricetin on the fate and potential risk of profenofos in the environment

    Static worst-case execution time analysis of the μC/OS-II real-time kernel

    No full text
    • …
    corecore