5,025 research outputs found
Spin-phonon coupling in Gd(Co1/2Mn1/2)O3 perovskite
We have investigated the temperature-dependent Raman-active phonons and the
magnetic properties of Gd(Co1/2Mn1/2)O3 perovskite ceramics in the temperature
range from 40 K to 300 K. The samples crystallized in an orthorhombic distorted
simple perovskite, whose symmetry belongs to the Pnma space group. The data
reveals spin-phonon coupling near the ferromagnetic transition occurring at
around 120 K. The correlation of the Raman and magnetization data suggests that
the structural order influences the magnitude of the spin-phonon coupling.Comment: 3 Figures, suplementary materia
Characteristics of Perennial Wheatgrass (Thinopyrum intermedium) and Refined Wheat Flour Blends: Impact on Rheological Properties
Intermediate wheatgrass (IWG) (Thinopyrum intermedium) is a perennial grass with desirable agronomic traits and positive effects on the environment. It has high fiber and protein contents, which increase the interest in using IWG for human consumption. In this study, IWG flour was blended with refined wheat at four IWG-to-wheat ratios (0:100, 50:50, 75:25, and 100:0). Samples were analyzed for proximate composition, microstructure features, pasting properties (Micro Visco-Amylo-Graph device), protein solubility, and total and accessible thiols. Gluten aggregation properties (GlutoPeak tester) and mixing profile (Farinograph-AT device) were also evaluated. IWG flour enrichment increased the pasting temperature and decreased the peak viscosity of blended flours. IWG proteins exhibited higher solubility than wheat, with a high amount of accessible and total thiols. The GlutoPeak tester highlighted the ability of IWG proteins to aggregate and generate torque. Higher IWG flour enrichment resulted in faster gluten aggregation with lower peak torque, suggesting weakening of wheat gluten strength. Finally, the addition of IWG to refined wheat flour resulted in a decrease in dough development time and an increase in consistency, likely because of the higher levels of fiber in IWG. The 50% IWG flour enrichment represents a good compromise between nutritional improvement and maintenance of the pasting properties, protein characteristics, and gluten aggregation kinetics
Tetracycline Selective Pressure and Homologous Recombination Shape the Evolution of Chlamydia suis: A Recently Identified Zoonotic Pathogen
Species closely related to the human pathogen Chlamydia trachomatis (Ct) have recently been found to cause zoonotic infections, posing a public health threat especially in the case of tetracycline resistant Chlamydia suis (Cs) strains. These strains acquired a tet(C)-containing cassette via horizontal gene transfer (HGT). Genomes of 11 Cs strains from various tissues were sequenced to reconstruct evolutionary pathway(s) for tet(C) HGT. Cs had the highest recombination rate of Chlamydia species studied to date. Admixture occurred among Cs strains and with Chlamydia muridarum but not with Ct. Although in vitro tet(C) cassette exchange with Ct has been documented, in vivo evidence may require examining human samples from Ct and Cs co-infected sites. Molecular-clock dating indicated that ancestral clades of resistant Cs strains predated the 1947 discovery of tetracycline, which was subsequently used in animal feed. The cassette likely spread throughout Cs strains by homologous recombination after acquisition from an external source, and our analysis suggests Betaproteobacteria as the origin. Selective pressure from tetracycline may be responsible for recent bottlenecks in Cs populations. Since tetracycline is an important antibiotic for treating Ct, zoonotic infections at mutual sites of infection indicate the possibility for cassette transfer and major public health repercussions
- …