1,325 research outputs found
Industrial Robot Trajectory Stiffness Mapping for Hybrid Manufacturing Process
The application of using industrial robots in hybrid manufacturing is promising, but the heavy external load applied on robot system, including the weight of deposition extruder or the cutting force from machining process, affects the operation accuracy significantly. This paper proposed a new method for helping robot to find the best position and orientation to perform heavy duty tasks based on the current system stiffness. By analyzing the robot kinematic and stiffness matrix properties of robot, a new evaluation formulation has been established for mapping the trajectory¢‚¬„¢s stiffness within the robot¢‚¬„¢s working volumetric. The influence of different position and orientation for hybrid manufacturing working path in different scale has been discussed. Finally, a visualized evaluation map can be obtained to describe the stiffness difference of a robotic deposition working path at different positions and orientations. The method is important for improving the operation performance of robot system with current stiffness capability
Picosecond imaging of sprays
Preliminary results from applying a Kerr-Fourier imaging system to a water/air spray produced by a shear coaxial element are presented. The physics behind ultrafast time-gated optical techniques is discussed briefly. A typical setup of a Kerr-Fourier time gating system is presented
Low Mach number effect in simulation of high Mach number flow
In this note, we relate the two well-known difficulties of Godunov schemes:
the carbuncle phenomena in simulating high Mach number flow, and the inaccurate
pressure profile in simulating low Mach number flow. We introduced two simple
low-Mach-number modifications for the classical Roe flux to decrease the
difference between the acoustic and advection contributions of the numerical
dissipation. While the first modification increases the local numerical
dissipation, the second decreases it. The numerical tests on the double-Mach
reflection problem show that both modifications eliminate the kinked Mach stem
suffered by the original flux. These results suggest that, other than
insufficient numerical dissipation near the shock front, the carbuncle
phenomena is strongly relevant to the non-comparable acoustic and advection
contributions of the numerical dissipation produced by Godunov schemes due to
the low Mach number effect.Comment: 9 pages, 1 figur
Model for the quasineutral region capacitance of p/n junction devices
The capacitance associated with free-carrier charge storage in the quasineutral region is a primary factor in limiting the switching speed of pin junction devices. This capacitance has been conventionally modeled using assumptions such as low-level injection, nondegeneracy, complete impurity ionization, and no space-charge region thickness modulation. These assumptions can give rise to a large error in device modeling, particularly for modern devices with very small geometry and high bias conditions. In this article, a comprehensive quasineutral region capacitance model including relevant device physics is developed. Comparisons between the present and conventional models are made, and the effects of using these two different models on the total capacitance of junction diode are also investigated
Effectiveness of Fluorography Versus Cineangiography at Reducing Radiation Exposure During Diagnostic Coronary Angiography
Coronary angiography is the gold standard for defining obstructive coronary disease. However, radiation exposure remains an unwanted hazard. Patients referred for coronary angiography with abdominal circumference60 ml/min were randomized to the fluorography (n = 25) or cineangiography (n = 25) group. Patients in the fluorography group underwent coronary angiography using retrospectively stored fluorography with repeat injection under cineangiography only when needed for better resolution per operator\u27s discretion. Patients in the cineangiography group underwent coronary angiography using routine cineangiography. The primary end point was patient radiation exposure measured by radiochromic film. Secondary end points included the radiation output measurement of kerma-area product and air kerma at the interventional reference point (Ka,r) and operator radiation exposure measured by a dosimeter. Patient radiation exposure (158.2 mGy [76.5 to 210.2] vs 272.5 mGy [163.3 to 314.0], p = 0.001), kerma-area product (1,323 mu Gy.m(2) 1826 to 1,765] vs 3,451 mu Gy.m(2) [2,464 to 4,818], p \u3c 0.001), and Ka,r (175 mGy [112 to 252] vs 558 mGy [313 to 621], p \u3c 0.001) were significantly lower in the fluorography compared with cineangiography group (42%, 62%, and 69% relative reduction, respectively). Operator radiation exposure trended in the same direction, although statistically nonsignificant (fluorography 2.35 mu Gy [1.24 to 6.30] vs cineangiography 5,03 mu Gy 12.48 to 7.80], p = 0.059). In conclusion, the use of fluorography in a select group of patients during coronary angiography, with repeat injection under cineangiography only when needed, was efficacious at reducing patient radiation exposure. (C) 2014 Elsevier Inc. All rights reserved
Boron carbide amorphous solid with tunable band gap
Boron carbide BxC (x = 1/6 − 10) powders were synthesized through a microwave-assisted carbothermic reduction reaction as a potential clean energy material. Their crystallographic structures and optical properties were characterized. X-ray diffraction and electron diffraction indicated that the synthesized BxC powders were amorphous. Electron energy-loss spectroscopy demonstrated that the composition of boron and carbon was in amorphous materials, and their chemical bonding were disclosed from Raman scattering spectroscopy. UV–vis absorption spectroscopy indicated that the bandgap of the bulks varied from 2.30eV to 3.90eV, tuned by the boron/carbon element ratio. The synthesized powders were potential photovoltaic materials. A short-range ordering model was established to explain the optical properties
Impact of aerosols on ice crystal size
The interactions between aerosols and ice clouds represent one of the largest
uncertainties in global radiative forcing from pre-industrial time to the
present. In particular, the impact of aerosols on ice crystal effective
radius (Rei), which is a key parameter determining ice clouds'
net radiative effect, is highly uncertain due to limited and conflicting
observational evidence. Here we investigate the effects of aerosols on
Rei under different meteorological conditions using 9-year
satellite observations. We find that the responses of Rei to
aerosol loadings are modulated by water vapor amount in conjunction with
several other meteorological parameters. While there is a significant
negative correlation between Rei and aerosol loading in moist
conditions, consistent with the "Twomey effect" for liquid clouds, a strong
positive correlation between the two occurs in dry conditions. Simulations
based on a cloud parcel model suggest that water vapor modulates the relative
importance of different ice nucleation modes, leading to the opposite aerosol
impacts between moist and dry conditions. When ice clouds are decomposed into
those generated from deep convection and formed in situ, the water vapor
modulation remains in effect for both ice cloud types, although the
sensitivities of Rei to aerosols differ noticeably between them
due to distinct formation mechanisms. The water vapor modulation can largely
explain the difference in the responses of Rei to aerosol
loadings in various seasons. A proper representation of the water vapor
modulation is essential for an accurate estimate of aerosol–cloud radiative
forcing produced by ice clouds
14-3-3σ Regulates β-Catenin-Mediated Mouse Embryonic Stem Cell Proliferation by Sequestering GSK-3β
[[abstract]]Background: Pluripotent embryonic stem cells are considered to be an unlimited cell source for tissue regeneration and cell-based therapy. Investigating the molecular mechanism underlying the regulation of embryonic stem cell expansion is thus important. 14-3-3 proteins are implicated in controlling cell division, signaling transduction and survival by interacting with various regulatory proteins. However, the function of 14-3-3 in embryonic stem cell proliferation remains unclear. Methodology and Principal Findings: In this study, we show that all seven 14-3-3 isoforms were detected in mouse embryonic stem cells. Retinoid acid suppressed selectively the expression of 14-3-3σ isoform. Knockdown of 14-3-3σ with siRNA reduced embryonic stem cell proliferation, while only 14-3-3σ transfection increased cell growth and partially rescued retinoid acid-induced growth arrest. Since the growth-enhancing action of 14-3-3σ was abrogated by β-catenin knockdown, we investigated the influence of 14-3-3σ overexpression on β-catenin/GSK-3β. 14-3-3σ bound GSK-3β and increased GSK-3β phosphorylation in a PI-3K/Akt-dependent manner. It disrupted β-catenin binding by the multiprotein destruction complex. 14-3-3σ overexpression attenuated β-catenin phosphorylation and rescued the decline of β-catenin induced by retinoid acid. Furthermore, 14-3-3σ enhanced Wnt3a-induced β-catenin level and GSK-3β phosphorylation. DKK, an inhibitor of Wnt signaling, abolished Wnt3a-induced effect but did not interfere GSK-3β/14-3-3σ binding. Significance:Our findings show for the first time that 14-3-3σ plays an important role in regulating mouse embryonic stem cell proliferation by binding and sequestering phosphorylated GSK-3β and enhancing Wnt-signaled GSK-3β inactivation. 14-3-3σ is a novel target for embryonic stem cell expansion
- …