16,206 research outputs found

    Noise from spatial heterogeneity changes signal amplification magnitude and increases the variability in dose responses

    Get PDF
    In most molecular level simulations, spatial heterogeneity is neglected by the well-mixed condition assumption. However, the signals of biomolecular networks are affected from both time and space, which are responsible for diverse physiological responses. To account the spatial heterogeneity in the kinetic model, we consider multiple subvolumes of a reaction, introduce parameters representing transfer of ligands between the volumes, and reduce this to an error-term representing the difference between the well-mixed condition and the actual spatial factors. The error-term approach allows modelling of varying spatial heterogeneity without increasing computational burden exponentially. The effect of varying this term, d, between 0 (well-mixed) and 1 (no mixing) and of adding noise to the kinetic constants was then investigated and correlated with knowledge of the behaviour of real systems and situations where network models are inadequate. The spatial distribution effects on the epidermal growth factor receptor (EGFR) in human mammary epithelial tissue, which is involved in proliferation and tumorigenesis, are studied by introducing noisy kinetic constants. The steady-state of the dose response in the EGFR is strongly affected by spatial fluctuations. The ligand-bound receptor is reduced up to 50% from the response without spatial fluctuations and the variance of the steady-state is increased at least 2-fold from the one for no spatial fluctuations. On the other hand, dynamic properties such as the rising time and overshoot are less sensitive to spatial noise

    A comparison of observation-level random effect and Beta-Binomial models for modelling over dispersion in Binomial data in ecology and evolution

    Get PDF
    Overdispersion is a common feature of models of biological data, but researchers often fail to model the excess variation driving the overdispersion, resulting in biased parameter estimates and standard errors. Quantifying and modeling overdispersion when it is present is therefore critical for robust biological inference. One means to account for overdispersion is to add an observation-level random effect (OLRE) to a model, where each data point receives a unique level of a random effect that can absorb the extra-parametric variation in the data. Although some studies have investigated the utility of OLRE to model overdispersion in Poisson count data, studies doing so for Binomial proportion data are scarce. Here I use a simulation approach to investigate the ability of both OLRE models and Beta-Binomial models to recover unbiased parameter estimates in mixed effects models of Binomial data under various degrees of overdispersion. In addition, as ecologists often fit random intercept terms to models when the random effect sample size is low (<5 levels), I investigate the performance of both model types under a range of random effect sample sizes when overdispersion is present. Simulation results revealed that the efficacy of OLRE depends on the process that generated the overdispersion; OLRE failed to cope with overdispersion generated from a Beta-Binomial mixture model, leading to biased slope and intercept estimates, but performed well for overdispersion generated by adding random noise to the linear predictor. Comparison of parameter estimates from an OLRE model with those from its corresponding Beta-Binomial model readily identified when OLRE were performing poorly due to disagreement between effect sizes, and this strategy should be employed whenever OLRE are used for Binomial data to assess their reliability. Beta-Binomial models performed well across all contexts, but showed a tendency to underestimate effect sizes when modelling non-Beta-Binomial data. Finally, both OLRE and Beta-Binomial models performed poorly when models contained <5 levels of the random intercept term, especially for estimating variance components, and this effect appeared independent of total sample size. These results suggest that OLRE are a useful tool for modelling overdispersion in Binomial data, but that they do not perform well in all circumstances and researchers should take care to verify the robustness of parameter estimates of OLRE models

    The future design direction of smart clothing development

    Get PDF
    Literature indicates that Smart Clothing applications, the next generation of clothing and electronic products, have been struggling to enter the mass market because the consumers’ latent needs have not been recognised. Moreover, the design direction of Smart Clothes remains unclear and unfocused. Nevertheless, a clear design direction is necessary for all product development. Therefore, this research aims to identify the design directions of the emerging Smart Clothes industry by conducting a questionnaire survey and focus groups with its major design contributors. The results reveal that the current strategy of embedding a wide range of electronic functions in a garment is not suitable. This is primarily because it does not match the users’ requirements, purchasing criteria and lifestyle. The results highlight the respondents’ preference for personal healthcare and sportswear applications that suit their lifestyle, are aesthetically attractive, and provide a practical function

    Band Offsets at the Si/SiO2_2 Interface from Many-Body Perturbation Theory

    Full text link
    We use many-body perturbation theory, the state-of-the-art method for band gap calculations, to compute the band offsets at the Si/SiO2_2 interface. We examine the adequacy of the usual approximations in this context. We show that (i) the separate treatment of band-structure and potential lineup contributions, the latter being evaluated within density-functional theory, is justified, (ii) most plasmon-pole models lead to inaccuracies in the absolute quasiparticle corrections, (iii) vertex corrections can be neglected, (iv) eigenenergy self-consistency is adequate. Our theoretical offsets agree with the experimental ones within 0.3 eV

    Recent high-magnetic-field studies of unusual groundstates in quasi-two-dimensional crystalline organic metals and superconductors

    Full text link
    After a brief introduction to crystalline organic superconductors and metals, we shall describe two recently-observed exotic phases that occur only in high magnetic fields. The first involves measurements of the non-linear electrical resistance of single crystals of the charge-density-wave (CDW) system (Per)2_2Au(mnt)2_2 in static magnetic fields of up to 45 T and temperatures as low as 25 mK. The presence of a fully gapped CDW state with typical CDW electrodynamics at fields higher that the Pauli paramagnetic limit of 34 T suggests the existence of a modulated CDW phase analogous to the Fulde-Ferrell-Larkin-Ovchinnikov state. Secondly, measurements of the Hall potential of single crystals of α\alpha-(BEDT-TTF)2_2KHg(SCN)4_4, made using a variant of the Corbino geometry in quasistatic magnetic fields, show persistent current effects that are similar to those observed in conventional superconductors. The longevity of the currents, large Hall angle, flux quantization and confinement of the reactive component of the Hall potential to the edge of the sample are all consistent with the realization of a new state of matter in CDW systems with significant orbital quantization effects in strong magnetic fields.Comment: SNS 2004 Conference presentatio

    Electronic structure reconstruction: the driving force behind the magnetic and structural transitions in NaFeAs

    Full text link
    The electronic structure of NaFeAs is studied with angle resolved photoemission spectroscopy on high quality single crystals. Large portions of the band structure start to shift around the structural transition temperature, and smoothly evolve as the temperature lowers through the spin density wave transition. Moreover, band folding due to magnetic order emerges around structural transition. Our observation provides direct evidence that the structural and magnetic transitions share the same origin, and are both driven by the electronic structure reconstruction in Fe-based superconductors, instead of Fermi surface nesting.Comment: 5 pages, 5 figure

    Electronic structure and Jahn-Teller effect in GaN:Mn and ZnS:Cr

    Full text link
    We present an ab-initio and analytical study of the Jahn-Teller effect in two diluted magnetic semiconductors (DMS) with d4 impurities, namely Mn-doped GaN and Cr-doped ZnS. We show that only the combined treatment of Jahn-Teller distortion and strong electron correlation in the 3d shell may lead to the correct insulating electronic structure. Using the LSDA+U approach we obtain the Jahn-Teller energy gain in reasonable agreement with the available experimental data. The ab-initio results are completed by a more phenomenological ligand field theory.Comment: 15 pages, 5 figure

    Spontaneous order in the highly frustrated spin-1/2 Ising-Heisenberg model on the triangulated Kagome lattice due to the Dzyaloshinskii-Moriya anisotropy

    Full text link
    The spin-1/2 Ising-Heisenberg model on the triangulated Kagome (triangles-in-triangles) lattice is exactly solved by establishing a precise mapping correspondence to the simple spin-1/2 Ising model on Kagome lattice. It is shown that the disordered spin liquid state, which otherwise occurs in the ground state of this frustrated spin system on assumption that there is a sufficiently strong antiferromagnetic intra-trimer interaction, is eliminated from the ground state by arbitrary but non-zero Dzyaloshinskii-Moriya anisotropy.Comment: 4 pages, 3 figures, to be presented at conference Highly Frustrated Magnetism, 7-12 September 2008, Braunschweig, German

    Landau quantization effects in the charge-density-wave system (Per)2M_2M(mnt)2_2 (where M=M=Au and Pt)

    Full text link
    A finite transfer integral tat_a orthogonal to the conducting chains of a highly one-dimensional metal gives rise to empty and filled bands that simulate an indirect-gap semiconductor upon formation of a commensurate charge-density-wave (CDW). In contrast to semiconductors such as Ge and Si with bandgaps 1\sim 1 eV, the CDW system possesses an indirect gap with a greatly reduced energy scale, enabling moderate laboratory magnetic fields to have a major effect. The consequent variation of the thermodynamic gap with magnetic field due to Zeeman splitting and Landau quantization enables the electronic bandstructure parameters (transfer integrals, Fermi velocity) to be determined accurately. These parameters reveal the orbital quantization limit to be reached at 20\sim 20 T in (Per)2M_2M(mnt)2_2 salts, making them highly unlikely candidates for a recently-proposed cascade of field-induced charge-density wave states
    corecore