1,956 research outputs found
Minimal Models for a Superconductor-Insulator Conformal Quantum Phase Transition
Conformal field theories do not only classify 2D classical critical behavior
but they also govern a certain class of 2D quantum critical behavior. In this
latter case it is the ground state wave functional of the quantum theory that
is conformally invariant, rather than the classical action. We show that the
superconducting-insulating (SI) quantum phase transition in 2D Josephson
junction arrays (JJAs) is a (doubled) Gaussian conformal quantum critical
point. The quantum action describing this system is a doubled
Maxwell-Chern-Simons model in the strong coupling limit. We also argue that the
SI quantum transitions in frustrated JJAs realize the other possible
universality classes of conformal quantum critical behavior, corresponding to
the unitary minimal models at central charge .Comment: 4 pages, no figure
Positive cross-correlations induced by ferromagnetic contacts
Due to the Fermionic nature of carriers, correlations between electric
currents flowing through two different contacts attached to a conductor present
a negative sign. Possibility for positive cross-correlations has been
demonstrated in hybrid normal/superconductor structures under certain
conditions. In this paper we show that positive cross-correlations can be
induced, if not already present, in such structures by employing ferromagnetic
leads with magnetizations aligned anti-parallel to each other. We consider
three-terminal hybrid structures and calculate the mean-square correlations of
current fluctuations as a function of the bias voltage at finite temperature.Comment: 6 pages, 5 figures; accepted version by PRB, figures replace
Characterization of the hot Neptune GJ 436b with Spitzer and ground-based observations
We present Spitzer Space Telescope infrared photometry of a secondary eclipse
of the hot Neptune GJ436b. The observations were obtained using the 8-micron
band of the InfraRed Array Camera (IRAC). The data spanning the predicted time
of secondary eclipse show a clear flux decrement with the expected shape and
duration. The observed eclipse depth of 0.58 mmag allows us to estimate a
blackbody brightness temperature of T_p = 717 +- 35 K at 8 microns. We compare
this infrared flux measurement to a model of the planetary thermal emission,
and show that this model reproduces properly the observed flux decrement. The
timing of the secondary eclipse confirms the non-zero orbital eccentricity of
the planet, while also increasing its precision (e = 0.14 +- 0.01). Additional
new spectroscopic and photometric observations allow us to estimate the
rotational period of the star and to assess the potential presence of another
planet.Comment: Accepted for publication in A&A on 11/09/2007; 7 pages, 6 figure
Gate errors in solid state quantum computer architectures
We theoretically consider possible errors in solid state quantum computation
due to the interplay of the complex solid state environment and gate
imperfections. In particular, we study two examples of gate operations in the
opposite ends of the gate speed spectrum, an adiabatic gate operation in
electron-spin-based quantum dot quantum computation and a sudden gate operation
in Cooper pair box superconducting quantum computation. We evaluate
quantitatively the non-adiabatic operation of a two-qubit gate in a
two-electron double quantum dot. We also analyze the non-sudden pulse gate in a
Cooper-pair-box-based quantum computer model. In both cases our numerical
results show strong influences of the higher excited states of the system on
the gate operation, clearly demonstrating the importance of a detailed
understanding of the relevant Hilbert space structure on the quantum computer
operations.Comment: 6 pages, 2 figure
Accurate Spitzer infrared radius measurement for the hot Neptune GJ 436b
We present Spitzer Space Telescope infrared photometry of a primary transit
of the hot Neptune GJ 436b. The observations were obtained using the 8 microns
band of the InfraRed Array Camera (IRAC). The high accuracy of the transit data
and the weak limb-darkening in the 8 microns IRAC band allow us to derive
(assuming M = 0.44 +- 0.04 Msun for the primary) a precise value for the
planetary radius (4.19 +0.21-0.16 Rearth), the stellar radius (0.463
+0.022-0.017 Rsun), the orbital inclination (85.90 +0.19-0.18 degrees) and
transit timing (2454280.78186 +0.00015-0.00008 HJD). Assuming current planet
models, an internal structure similar to that of Neptune with a small H/He
envelope is necessary to account for the measured radius of GJ 436b.Comment: Accepted for publication in A&A on 21/07/2007; 5 pages, 3 figure
Dynamics of Entanglement in One-Dimensional Spin Systems
We study the dynamics of quantum correlations in a class of exactly solvable
Ising-type models. We analyze in particular the time evolution of initial Bell
states created in a fully polarized background and on the ground state. We find
that the pairwise entanglement propagates with a velocity proportional to the
reduced interaction for all the four Bell states. Singlet-like states are
favored during the propagation, in the sense that triplet-like states change
their character during the propagation under certain circumstances.
Characteristic for the anisotropic models is the instantaneous creation of
pairwise entanglement from a fully polarized state; furthermore, the
propagation of pairwise entanglement is suppressed in favor of a creation of
different types of entanglement. The ``entanglement wave'' evolving from a Bell
state on the ground state turns out to be very localized in space-time. Further
support to a recently formulated conjecture on entanglement sharing is given.Comment: 25 pages, 21 figures; revte
Scaling of Entanglement close to a Quantum Phase Transitions
In this Letter we discuss the entanglement near a quantum phase transition by
analyzing the properties of the concurrence for a class of exactly solvable
models in one dimension. We find that entanglement can be classified in the
framework of scaling theory. Further, we reveal a profound difference between
classical correlations and the non-local quantum correlation, entanglement: the
correlation length diverges at the phase transition, whereas entanglement in
general remains short ranged.Comment: 4 pages, 4 figures, revtex. Stylistic changes and format modifie
- …