9,293 research outputs found
Magnetothermoelectric transport properties in phosphorene
We numerically study the electrical and thermoelectric transport properties
in phosphorene in the presence of both a magnetic field and disorder. The
quantized Hall conductivity is similar to that of a conventional
two-dimensional electron gas, but the positions of all the Hall plateaus shift
to the left due to the spectral asymmetry, in agreement with the experimental
observations. The thermoelectric conductivity and Nernst signal exhibit
remarkable anisotropy, and the thermopower is nearly isotropic. When a bias
voltage is applied between top and bottom layers of phosphorene, both
thermopower and Nernst signal are enhanced and their peak values become large.Comment: 8 pages, 9 figure
Non-canonical statistics of finite quantum system
The canonical statistics describes the statistical properties of an open
system by assuming its coupling with the heat bath infinitesimal in comparison
with the total energy in thermodynamic limit. In this paper, we generally
derive a non-canonical distribution for the open system with a finite coupling
to the heat bath, which deforms the energy shell to effectively modify the
conventional canonical way. The obtained non-canonical distribution reflects
the back action of system on the bath, and thus depicts the statistical
correlations through energy fluctuations
Fractional Quantum Hall Effect in Topological Flat Bands with Chern Number Two
Recent theoretical works have demonstrated various robust Abelian and
non-Abelian fractional topological phases in lattice models with topological
flat bands carrying Chern number C=1. Here we study hard-core bosons and
interacting fermions in a three-band triangular-lattice model with the lowest
topological flat band of Chern number C=2. We find convincing numerical
evidence of bosonic fractional quantum Hall effect at the filling
characterized by three-fold quasi-degeneracy of ground states on a torus, a
fractional Chern number for each ground state, a robust spectrum gap, and a gap
in quasihole excitation spectrum. We also observe numerical evidence of a
robust fermionic fractional quantum Hall effect for spinless fermions at the
filling with short-range interactions.Comment: 5 pages, 7 figures, with Supplementary Materia
Ruhm Meets GHH
This paper …rst documents several important business cycle properties of health status and health expenditures in the US. We …nd that health expenditures are pro-cyclical while health status is counter-cyclical. We then develop a stochastic dynamic general equilibrium model with endogenous health accumulation. The model has four distinct features: 1) Both medical expenditures and leisure time are used to produce health stock; 2) Health enters into production function; 3) Depreciation rate of health stock negatively depends on working hours; 4) Health enters into utility function. We calibrate the model to US economy. The results show that the model can jointly rationalize the counter-cyclicality of health status and pro-cyclicality of medical expenditure. We also investigate the relative importance of each feature in a¤ecting th
Negative Magnetoresistance in the Nearest-neighbor Hopping Conduction
We propose a size effect which leads to the negative magnetoresistance in
granular metal-insulator materials in which the hopping between two nearest
neighbor clusters is the main transport mechanism. We show that the hopping
probability increases with magnetic field. This is originated from the level
crossing in a few-electron cluster. Thus, the overlap of electronic states of
two neighboring clusters increases, and the negative magnetoresistance is
resulted.Comment: Latex file, no figur
Observation of Terahertz Radiation via the Two-Color Laser Scheme with Uncommon Frequency Ratios
In the widely-studied two-color laser scheme for terahertz (THz) radiation
from a gas, the frequency ratio of the two lasers is usually fixed at
1:2. We investigate THz generation with uncommon frequency
ratios. Our experiments show, for the first time, efficient THz generation with
new ratios of 1:4 and 2:3. We observe that the THz
polarization can be adjusted by rotating the longer-wavelength laser
polarization and the polarization adjustment becomes inefficient by rotating
the other laser polarization; the THz energy shows similar scaling laws with
different frequency ratios. These observations are inconsistent with multi-wave
mixing theory, but support the gas-ionization model. This study pushes the
development of the two-color scheme and provides a new dimension to explore the
long-standing problem of the THz generation mechanism.Comment: 6 pages, 3 figure
- …
