46,573 research outputs found
Two-component model for the chemical evolution of the Galactic disk
In the present paper, we introduce a two-component model of the Galactic disk
to investigate its chemical evolution. The formation of the thick and thin
disks occur in two main accretion episodes with both infall rates to be
Gaussian. Both the pre-thin and post-thin scenarios for the formation of the
Galactic disk are considered. The best-fitting is obtained through
-test between the models and the new observed metallicity distribution
function of G dwarfs in the solar neighbourhood (Hou et al 1998). Our results
show that post-thin disk scenario for the formation of the Galactic disk should
be preferred. Still, other comparison between model predictions and
observations are given.Comment: 23 pages, 7 figure
Mediating exchange bias by Verwey transition in CoO/Fe3O4 thin film
We report the tunability of the exchange bias effect by the first-order
metal-insulator transition (known as the Verwey transition) of Fe3O4 in CoO (5
nm)/Fe3O4 (40 nm)/MgO (001) thin film. In the vicinity of the Verwey
transition, the exchange bias field is substantially enhanced because of a
sharp increase in magnetocrystalline anisotropy constant from high-temperature
cubic to lowtemperature monoclinic structure. Moreover, with respect to the
Fe3O4 (40 nm)/MgO (001) thin film, the coercivity field of the CoO (5 nm)/Fe3O4
(40 nm)/MgO (001) bilayer is greatly increased for all the temperature range,
which would be due to the coupling between Co spins and Fe spins across the
interface
Impurity scattering and Friedel oscillations in mono-layer black phosphorus
We study the effect of impurity scattering effect in black phosphorurene (BP)
in this work. For single impurity, we calculate impurity induced local density
of states (LDOS) in momentum space numerically based on tight-binding
Hamiltonian. In real space, we calculate LDOS and Friedel oscillation
analytically. LDOS shows strong anisotropy in BP. Many impurities in BP are
investigated using -matrix approximation when the density is low. Midgap
states appear in band gap with peaks in DOS. The peaks of midgap states are
dependent on impurity potential. For finite positive potential, the impurity
tends to bind negative charge carriers and vise versa. The infinite impurity
potential problem is related to chiral symmetry in BP
Production of the -Wave Excited -States through the Boson Decays
In Ref.[7],we have dealt with the production of the two color-singlet
-wave -quarkonium states and
through the boson decays. As an
important sequential work, we make a further discussion on the production of
the more complicated -wave excited -quarkonium states, i.e.
and (with
). More over, we also calculate the channel with the two color-octet
quarkonium states and , whose contributions to the decay width maybe at the same order of
magnitude as that of the color-singlet -wave states according to the naive
nonrelativistic quantum chromodynamics scaling rules. The -wave states shall
provide sizable contributions to the production, whose decay width is
about 20% of the total decay width . After summing up all
the mentioned -quarkonium states' contributions, we obtain
KeV, where the errors are caused
by the main uncertainty sources.Comment: 8 pages, 5 figures and 2 tables. basic formulae in the appendix are
cut off to match the published version, which can be found in v1. to be
published in Eur.Phys.J.
Verwey transition in FeO thin films: Influence of oxygen stoichiometry and substrate-induced microstructure
We have carried out a systematic experimental investigation to address the
question why thin films of FeO (magnetite) generally have a very broad
Verwey transition with lower transition temperatures as compared to the bulk.
We observed using x-ray photoelectron spectroscopy, x-ray diffraction and
resistivity measurements that the Verwey transition in thin films is
drastically influenced not only by the oxygen stoichiometry but especially also
by the substrate-induced microstructure. In particular, we found (1) that the
transition temperature, the resistivity jump, and the conductivity gap of fully
stoichiometric films greatly depends on the domain size, which increases
gradually with increasing film thickness, (2) that the broadness of the
transition scales with the width of the domain size distribution, and (3) that
the hysteresis width is affected strongly by the presence of antiphase
boundaries. Films grown on MgO (001) substrates showed the highest and sharpest
transitions, with a 200 nm film having a T of 122K, which is close to the
bulk value. Films grown on substrates with large lattice constant mismatch
revealed very broad transitions, and yet, all films show a transition with a
hysteresis behavior, indicating that the transition is still first order rather
than higher order.Comment: 9 pages, 12 figure
- …