2,231 research outputs found

    Imaging, Intervention, and Workflow in Acute Ischemic Stroke: The Calgary Approach

    Get PDF
    ABSTRACT SUMMARY: Five recently published clinical trials showed dramatically higher rates of favorable functional outcome and a satisfying safety profile of endovascular treatment compared with the previous standard of care in acute ischemic stroke with proximal anterior circulation artery occlusion. Eligibility criteria within these trials varied by age, stroke severity, imaging, treatment-time window, and endovascular treatment devices. This focused review provides an overview of the trial results and explores the heterogeneity in imaging techniques, workflow, and endovascular techniques used in these trials and the consequent impact on practice. Using evidence from these trials and following a case from start to finish, this review recommends strategies that will help the appropriate patient undergo a fast, focused clinical evaluation, imaging, and intervention. ABBREVIATIONS: MR CLEAN Ď­ Multicenter Randomized Clinical trial of Endovascular treatment for Acute ischemic stroke in the Netherlands; EMS Ď­ Emergenc

    Stochastic Heterostructures in B/N-Doped Carbon Nanotubes

    Full text link
    Carbon nanotubes are one-dimensional and very narrow. These obvious facts imply that under doping with boron and nitrogen, microscopic doping inhomogeneity is much more important than for bulk semiconductors. We consider the possibility of exploiting such fluctuations to create interesting devices. Using self-consistent tight-binding (SCTB), we study heavily doped highly compensated nanotubes, revealing the spontaneous formation of structures resembling chains of random quantum dots, or nano-scale diode-like elements in series. We also consider truly isolated impurities, revealing simple scaling properties of bound state sizes and energies.Comment: 4 pages RevTeX, 4 PostScript figure

    Band structures of periodic carbon nanotube junctions and their symmetries analyzed by the effective mass approximation

    Full text link
    The band structures of the periodic nanotube junctions are investigated by the effective mass theory and the tight binding model. The periodic junctions are constructed by introducing pairs of a pentagonal defect and a heptagonal defect periodically in the carbon nanotube. We treat the periodic junctions whose unit cell is composed by two kinds of metallic nanotubes with almost same radii, the ratio of which is between 0.7 and 1 . The discussed energy region is near the undoped Fermi level where the channel number is kept to two, so there are two bands. The energy bands are expressed with closed analytical forms by the effective mass theory with some assumptions, and they coincide well with the numerical results by the tight binding model. Differences between the two methods are also discussed. Origin of correspondence between the band structures and the phason pattern discussed in Phys. Rev. B {\bf 53}, 2114, is clarified. The width of the gap and the band are in inverse proportion to the length of the unit cell, which is the sum of the lengths measured along the tube axis in each tube part and along 'radial' direction in the junction part. The degeneracy and repulsion between the two bands are determined only from symmetries.Comment: RevTeX, gif fil

    Evolution in the split-peak structure across the Peak Effect region in single crystals of 2H2H-NbSe2_2

    Full text link
    We have explored the presence of a two-peak feature spanning the peak effect (PE) region in the ac susceptibility data and the magnetization hysteresis measurements over a wide field-temperature regime in few weakly pinned single crystals of 2H2H-NbSe2_2, which display reentrant characteristic in the PE curve near TcT_c(0). We believe that the two-peak feature evolves into distinct second magnetization peak anomaly well separated from the PE with gradual enhancement in the quenched random pinning.Comment: 9 figure

    Surface reconstruction induced geometries of Si clusters

    Full text link
    We discuss a generalization of the surface reconstruction arguments for the structure of intermediate size Si clusters, which leads to model geometries for the sizes 33, 39 (two isomers), 45 (two isomers), 49 (two isomers), 57 and 61 (two isomers). The common feature in all these models is a structure that closely resembles the most stable reconstruction of Si surfaces, surrounding a core of bulk-like tetrahedrally bonded atoms. We investigate the energetics and the electronic structure of these models through first-principles density functional theory calculations. These models may be useful in understanding experimental results on the reactivity of Si clusters and their shape as inferred from mobility measurements.Comment: 9 figures (available from the author upon request) Submitted to Phys. Rev.

    Carotid Webs and Recurrent Ischemic Strokes in the Era of CT Angiography

    Get PDF
    ABSTRACT BACKGROUND AND PURPOSE: Carotid webs may cause recurrent ischemic stroke. We describe the prevalence, demographics, clinical presentation, imaging features, histopathology, and stroke risk associated with this under-recognized lesion

    Clinical-pathological study on β-APP, IL-1β, GFAP, NFL, Spectrin II, 8OHdG, TUNEL, miR-21, miR-16, miR-92 expressions to verify DAI-diagnosis, grade and prognosis

    Get PDF
    Traumatic brain injury (TBI) is one of the most important death and disability cause, involving substantial costs, also in economic terms, when considering the young age of the involved subject. Aim of this paper is to report a series of patients treated at our institutions, to verify neurological results at six months or survival; in fatal cases we searched for βAPP, GFAP, IL-1β, NFL, Spectrin II, TUNEL and miR-21, miR-16, and miR-92 expressions in brain samples, to verify DAI diagnosis and grade as strong predictor of survival and inflammatory response. Concentrations of 8OHdG as measurement of oxidative stress was performed. Immunoreaction of β-APP, IL-1β, GFAP, NFL, Spectrin II and 8OHdG were significantly increased in the TBI group with respect to control group subjects. Cell apoptosis, measured by TUNEL assay, were significantly higher in the study group than control cases. Results indicated that miR-21, miR-92 and miR-16 have a high predictive power in discriminating trauma brain cases from controls and could represent promising biomarkers as strong predictor of survival, and for the diagnosis of postmortem traumatic brain injury

    A scalable High Voltage Power Supply System with system on chip control for Micro Pattern Gaseous Detectors

    Get PDF
    The requirements posed to high voltage power supply systems by the operation of Micro Pattern Gaseous Detectors are specific in terms of high resolution diagnostic features and intelligent dynamic voltage control. These requirements are needed both when technology development is performed and when extended detector systems are supplied and monitored. Systems satisfying all the needed features are not commercially available. A single channel high voltage system matching the Micro Pattern Gaseous Detector needs has been designed and realized, including its hardware and software components. The system employs a commercial DCDC converter and is coupled to a custom high resolution ammeter. Local intelligence, flexibility and high speed inter-connectivity are provided by a System on Chip Board and the use of a powerful FPGA. The single channel system has been developed, as critical milestone towards the realization of a multi-channel system. The design, implementation and performance of the system are reported in detail in this article, as well as the performance of the single channel power supply when connected to a Micro Pattern Gaseous Detector in realistic working condition during a test beam exercise

    Evaporation of the pancake-vortex lattice in weakly-coupled layered superconductors

    Full text link
    We calculate the melting line of the pancake-vortex system in a layered superconductor, interpolating between two-dimensional (2D) melting at high fields and the zero-field limit of single-stack evaporation. Long-range interactions between pancake vortices in different layers permit a mean-field approach, the ``substrate model'', where each 2D crystal fluctuates in a substrate potential due to the vortices in other layers. We find the thermal stability limit of the 3D solid, and compare the free energy to a 2D liquid to determine the first-order melting transition and its jump in entropy.Comment: 4 pages, RevTeX, two postscript figures incorporated using eps
    • …
    corecore