572 research outputs found

    Chemistry and kinematics in the solar neighborhood: implications for stellar populations and for galaxy evolution

    Get PDF
    The immediate Solar neighborhood should be a fair sample of the local Galaxy. However, the chemical abundance distribution of long-lived disk stars very near the Sun contains a factor of five to ten more metal-poor stars, -1 \simlt {\rm [Fe/H]} \simlt -0.4 dex, than is consistent with modern star-count models of larger scale Galactic structure. The metallicity distribution of complete samples of long-lived stars has long been recognised as providing unique constraints on the early stages of chemical evolution of the Galaxy, so that one would like to resolve this anomaly. We present a new derivation of the local G-dwarf metallicity distribution, based on the Third Gliese catalog combined with Olsen's (1983) Str\"omgren photometry. Kinematic data for these same stars, as well as for a high-precision sample studied by Edvardsson {\sl et al.} (1993), provide clear evidence that the abundance distribution below [Fe/H]\sim -0.4 contains two over-lapping distributions, the thick disk and the thin disk. We achieve a reliable deconvolution of the relative numbers in each population by comparing the local metallicity distribution with a recent determination (Gilmore, Wyse \& Jones 1995) of the metallicity distribution of F/G stars {\sl in situ} some 1500pc from the Sun. The gravitational sieve of the Galactic potential acts on this second sample to segregate the low velocity dispersion, thin-disk, component of the local sample, leaving predominantly the second, higher velocity dispersion component. The combination of these two datasets allows us to determine the source of the local paradox: there is a substantial tail of the thin disk (defined kinematically) metallicity distribution, which extends below {\rm [Fe/H] \approx -0.4}dex. This is a robust conclusion, being consistent with the sum of star count, stellar spatia

    The merging history of the Milky Way

    Get PDF
    The age distribution, and chemical elemental abundances, of stars in the halo of the Milky Way provide constraints on theories of galaxy formation. As one specific example, the accretion of satellite galaxies similar to the present retinue of dwarf spheroidals (dSphs) would provide an observable metal-poor, intermediate-age population. This paper presents a quantitative assessment of any contribution made by such stars to the stellar halo. The bulk of the stellar populations in the halo show a well-defined turn-off, at B-V ~ 0.4, implying that the vast majority of the stars are old. The fraction of stars which lie blueward of this well-defined turn-off, with metallicities similar to that of the present dSphs, is used in this paper to place limits on the importance of the recent accretion of such systems. Very few (~ -1.5 dex). Direct comparison of this statistic with the colour distribution of the turnoff stars in the Carina dwarf allows us to derive an upper limit on the number of mergers of such satellite galaxies into the halo of the Milky Way. This upper limit is ~ 40 Carina-like galaxies. The higher metallicity data constrain satellite galaxies like the Fornax dwarf; only <~ 5 of these could have been accreted within the last < ~ 10 Gyr. We note that the low star-formation rates inferred for dSphs predict distinctive elemental abundance signatures; future data for field halo stars, including candidate younger stars, will provide a further robust test of accretion models

    Good abundances from bad spectra; 1, techniques

    Get PDF
    We have developed techniques to extract true iron abundances and surface gravities from spectra of the type provided by the multiple-object fibre-fed spectroscopic radial-velocity surveys underway with 2dF, HYDRA, NESSIE, and the forthcoming Sloan survey. Our method is optimised for low S/N, intermediate resolution blue spectra of G stars. Spectroscopic indices sensitive to iron abundance and gravity are defined from a set of narrow (few Angstrom) wavelength intervals, and calibrated using synthetic spectra. We have also defined a single abundance indicator which is able to provide useful iron abundance information from spectra having S/N ratios as low as 10 per Angstrom. The theoretical basis and calibration using synthetic spectra are described in this paper. The empirical calibration of these techniques by application to observational data is described in Jones, Wyse and Gilmore (PASP July 1995). The technique provides precise iron abundances, with zero-point correct to \sim 0.1 dex, and is reliable, with typical uncertainties being \approxle 0.2 dex. A derivation of the {\it in situ\/} thick disk metallicity distribution using these techniques is presented by Gilmore, Wyse and Jones (AJ 1995 v109 p1095)

    Interactions of keV sterile neutrinos with matter

    Get PDF
    A sterile neutrino with mass of several keV is a well-motivated dark-matter candidate, and it can also explain the observed velocities of pulsars via anisotropic emission of sterile neutrinos from a cooling neutron star. We discuss the interactions of such relic particles with matter and comment on the prospects of future direct detection experiments. A relic sterile neutrino can interact, via sterile-active mixing, with matter fermions by means of electroweak currents, with the final state containing a relativistic active neutrino. The recoil momentum impacted onto a matter fermion is determined by the sterile neutrino mass and is enough to ionize atoms and flip the spins of nuclei. While this suggests a possibility of direct experimental detection, we calculate the rates and show that building a realistic detector of the required size would be a daunting challenge.Comment: 5 pages, 1 figur

    The Faint Optical Stellar Luminosity Function in the Ursa Minor Dwarf Spheroidal Galaxy

    Get PDF
    Analyses of their internal stellar kinematics imply that the dwarf spheroidal (dSph) companion galaxies to the Milky Way are among the most dark matter-dominated systems known. Should there be significant dark matter in the form of faint stars in these systems, the stellar luminosity function must be very different from that of a similar metallicity globular cluster, for which there is no evidence for dark matter. We present the faint stellar luminosity function in the Ursa Minor dSph, down to a luminosity corresponding to ~0.45 M_solar, derived from new deep Hubble Space Telescope/WFPC2 data. We find a remarkable similarity between this luminosity function, and inferred initial mass function, and those of the globular cluster M92, a cluster of similar age and metallicity to the Ursa Minor dSph

    On the Nature of Andromeda IV

    Get PDF
    Lying at a projected distance of 40' or 9 kpc from the centre of M31, Andromeda IV is an enigmatic object first discovered during van den Bergh's search for dwarf spheroidal companions to M31. Being bluer, more compact and higher surface brightness than other known dwarf spheroidals, it has been suggested that And IV is either a relatively old `star cloud' in the outer disk of M31 or a background dwarf galaxy. We present deep HST WFPC2 observations of And IV and the surrounding field which, along with ground-based long-slit spectroscopy and Halpha imagery, are used to decipher the true nature of this puzzling object. We find compelling evidence that And IV is a background galaxy seen through the disk of M31. The moderate surface brightness (SB(V)~24), very blue colour (V-I<~0.6), low current star formation rate (~0.001 solar mass/yr) and low metallicity (~10% solar) reported here are consistent with And IV being a small dwarf irregular galaxy, perhaps similar to Local Group dwarfs such as IC 1613 and Sextans A. Although the distance to And IV is not tightly constrained with the current dataset, various arguments suggest it lies in the range 5<~D<~8 Mpc, placing it well outside the confines of the Local Group. It may be associated with a loose group of galaxies, containing major members UGC 64, IC 1727 and NGC 784. We report an updated position and radial velocity for And IV.Comment: 26 pages, LaTex with 9 figures (including 6 jpg plates). Accepted for publication in A
    • …
    corecore