245 research outputs found

    Kelvin-Helmholtz instability in a current-vortex sheet at a 3D magnetic null

    Get PDF
    We report here, for the first time, an observed instability of a Kelvin-Helmholtz nature occurring in a fully three-dimensional (3D) current-vortex sheet at the fan plane of a 3D magnetic null point. The current-vortex layer forms self-consistently in response to foot point driving around the spine lines of the null. The layer first becomes unstable at an intermediate distance from the null point, with the instability being characterized by a rippling of the fan surface and a filamentation of the current density and vorticity in the shear layer. Owing to the 3D geometry of the shear layer, a branching of the current filaments and vortices is observed. The instability results in a mixing of plasma between the two topologically distinct regions of magnetic flux on either side of the fan separatrix surface, as flux is reconnected across this surface. We make a preliminary investigation of the scaling of the system with the dissipation parameters. Our results indicate that the fan plane separatrix surface is an ideal candidate for the formation of current-vortex sheets in complex magnetic fields and, therefore, the enhanced heating and connectivity change associated with the instabilities of such layers

    Spine-fan reconnection. The influence of temporal and spatial variation in the driver

    Get PDF
    Context. From observations, the atmosphere of the Sun has been shown to be highly dynamic with perturbations of the magnetic field often lacking temporal or spatial symmetry. Despite this, studies of the spine-fan reconnection mode at 3D nulls have so far focused on the very idealised case with symmetric driving of a fixed spatial extent. Aims. We investigate the spine-fan reconnection process for less idealised cases, focusing on asymmetric driving and drivers with different length scales. We look at the initial current sheet formation and whether the scalings developed in the idealised models are robust in more realistic situations. Methods. The investigation was carried out by numerically solving the resistive compressible 3D magnetohydrodynamic equations in a Cartesian box containing a linear null point. The spine-fan collapse was driven at the null through tangential boundary driving of the spine foot points. Results. We find significant differences in the initial current sheet formation with asymmetric driving. Notable is the displacement of the null point position as a function of driving velocity and resistivity (η). However, the scaling relations developed in the idealised case are found to be robust (albeit at reduced amplitudes) despite this extra complexity. Lastly, the spatial variation is also shown to play an important role in the initial current sheet formation through controlling the displacement of the spine foot points. Conclusions. We conclude that during the early stages of spine-fan reconnection both the temporal and spatial nature of the driving play important roles, with the idealised symmetrically driven case giving a “best case” for the rate of current development and connectivity change. As the most interesting eruptive events occur in relatively short time frames this work clearly shows the need for high temporal and spatial knowledge of the flows for accurate interpretation of the reconnection scenario. Lastly, since the scalings developed in the idealised case remain robust with more complex driving we can be more confident of their use in interpreting reconnection in complex magnetic field structures

    Dynamic topology and flux rope evolution during non-linear tearing of 3D null point current sheets

    Get PDF
    In this work, the dynamic magnetic field within a tearing-unstable three-dimensional current sheet about a magnetic null point is described in detail. We focus on the evolution of the magnetic null points and flux ropes that are formed during the tearing process. Generally, we find that both magnetic structures are created prolifically within the layer and are non-trivially related. We examine how nulls are created and annihilated during bifurcation processes, and describe how they evolve within the current layer. The type of null bifurcation first observed is associated with the formation of pairs of flux ropes within the current layer. We also find that new nulls form within these flux ropes, both following internal reconnection and as adjacent flux ropes interact. The flux ropes exhibit a complex evolution, driven by a combination of ideal kinking and their interaction with the outflow jets from the main layer. The finite size of the unstable layer also allows us to consider the wider effects of flux rope generation. We find that the unstable current layer acts as a source of torsional magnetohydrodynamic waves and dynamic braiding of magnetic fields. The implications of these results to several areas of heliophysics are discussed

    The use of statistical parametric mapping (SPM96) as a decision aid in the differential diagnosis of dementia using 99mTc-HMPAO SPECT. Behav Neurol

    Get PDF
    In this study standard patterns of cerebral perfusion based on classifications described in the literature have been chosen and the ability of experienced imaging specialists to categorise the 99m Tc HMPAO SPECT scans of patients referred to the department for investigation of dementia has been compared before and after the calculation of Statistical Parametric Maps (SPM -Wellcome Dept of Cognitive Neurology). The primary aim was to investigate whether SPM is an effective decision aid and whether it impacts on the confidence of image reporting. The secondary aim was to examine the influence of SPM on the agreement between image reporting and clinical diagnosis. The results showed that there was a slight decrease in agreement between the imaging specialists after the introduction of additional information from SPM (K = 0.57 to K = 0.5) and that agreement between imaging reporting (including information from SPM) and clinical diagnosis was moderate (K = 0.28). This study was able to confirm that SPM is capable of producing meaningful significance maps of individual patients in a routine clinical environment. However, there was no overwhelming evidence that SPM was able to resolve many of the dilemmas associated with the use of SPECT for the differential diagnosis of dementia. In particular, interpretation of SPECT perfusion patterns in dementia is a bigger problem than the initial identification of abnormalities

    The Use of Statistical Parametric Mapping (SPM96) as a Decision Aid in the Differential Diagnosis of Dementia Using 99m

    Get PDF
    In this study standard patterns of cerebral perfusion based on classifications described in the literature have been chosen and the ability of experienced imaging specialists to categorise the 99mTc HMPAO SPECT scans of patients referred to the department for investigation of dementia has been compared before and after the calculation of Statistical Parametric Maps (SPM—Wellcome Dept of Cognitive Neurology). The primary aim was to investigate whether SPM is an effective decision aid and whether it impacts on the confidence of image reporting. The secondary aim was to examine the influence of SPM on the agreement between image reporting and clinical diagnosis. The results showed that there was a slight decrease in agreement between the imaging specialists after the introduction of additional information from SPM (K = 0.57 to K = 0.5) and that agreement between imaging reporting (including information from SPM) and clinical diagnosis was moderate (K = 0.28). This study was able to confirm that SPM is capable of producing meaningful significance maps of individual patients in a routine clinical environment. However, there was no overwhelming evidence that SPM was able to resolve many of the dilemmas associated with the use of SPECT for the differential diagnosis of dementia. In particular, interpretation of SPECT perfusion patterns in dementia is a bigger problem than the initial identification of abnormalities

    Generalised models for torsional spine and fan magnetic reconnection

    Full text link
    Three-dimensional null points are present in abundance in the solar corona, and the same is likely to be true in other astrophysical environments. Recent studies suggest that reconnection at such 3D nulls may play an important role in the coronal dynamics. In this paper the properties of the torsional spine and torsional fan modes of magnetic reconnection at 3D nulls are investigated. New analytical models are developed, which for the first time include a current layer that is spatially localised around the null, extending along either the spine or the fan of the null. These are complemented with numerical simulations. The principal aim is to investigate the effect of varying the degree of asymmetry of the null point magnetic field on the resulting reconnection process - where previous studies always considered a non-generic radially symmetric null. The geometry of the current layers within which torsional spine and torsional fan reconnection occur is found to be strongly dependent on the symmetry of the magnetic field. Torsional spine reconnection still occurs in a narrow tube around the spine, but with elliptical cross-section when the fan eigenvalues are different, and with the short axis of the ellipse being along the strong field direction. The spatiotemporal peak current, and the peak reconnection rate attained, are found not to depend strongly on the degree of asymmetry. For torsional fan reconnection, the reconnection occurs in a planar disk in the fan surface, which is again elliptical when the symmetry of the magnetic field is broken. The short axis of the ellipse is along the weak field direction, with the current being peaked in these weak field regions. The peak current and peak reconnection rate in this case are clearly dependent on the asymmetry, with the peak current increasing but the reconnection rate decreasing as the degree of asymmetry is increased

    Fractal Reconnection in Solar and Stellar Environments

    Full text link
    Recent space based observations of the Sun revealed that magnetic reconnection is ubiquitous in the solar atmosphere, ranging from small scale reconnection (observed as nanoflares) to large scale one (observed as long duration flares or giant arcades). Often the magnetic reconnection events are associated with mass ejections or jets, which seem to be closely related to multiple plasmoid ejections from fractal current sheet. The bursty radio and hard X-ray emissions from flares also suggest the fractal reconnection and associated particle acceleration. We shall discuss recent observations and theories related to the plasmoid-induced-reconnection and the fractal reconnection in solar flares, and their implication to reconnection physics and particle acceleration. Recent findings of many superflares on solar type stars that has extended the applicability of the fractal reconnection model of solar flares to much a wider parameter space suitable for stellar flares are also discussed.Comment: Invited chapter to appear in "Magnetic Reconnection: Concepts and Applications", Springer-Verlag, W. D. Gonzalez and E. N. Parker, eds. (2016), 33 pages, 18 figure
    corecore