3,085 research outputs found

    The Diener

    Full text link

    The Accretion Flows and Evolution of Magnetic Cataclysmic Variables

    Full text link
    We have used a model of magnetic accretion to investigate the accretion flows of magnetic cataclysmic variables. Numerical simulations demonstrate that four types of flow are possible: discs, streams, rings and propellers. The fundamental observable determining the accretion flow, for a given mass ratio, is the spin-to-orbital period ratio of the system. If IPs are accreting at their equilibrium spin rates, then for a mass ratio of 0.5, those with Pspin/Porb < 0.1 will be disc-like, those with 0.1 < Pspin/Porb < 0.6 will be stream-like, and those with Pspin/Porb ~ 0.6 will be ring-like. The spin to orbital period ratio at which the systems transition between these flow types increases as the mass ratio of the stellar components decreases. For the first time we present evolutionary tracks of mCVs which allow investigation of how their accretion flow changes with time. As systems evolve to shorter orbital periods and smaller mass ratios, in order to maintain spin equilibrium, their spin-to-orbital period ratio will generally increase. As a result, the relative occurrence of ring-like flows will increase, and the occurrence of disc-like flows will decrease, at short orbital periods. The growing number of systems observed at high spin-to-orbital period ratios with orbital periods below 2h, and the observational evidence for ring-like accretion in EX Hya, are fully consistent with this picture.Comment: Accepted for publication in ApJ. 6 figures - included here at low resolutio

    Magnetic Cataclysmic Variable Accretion Flows

    Get PDF
    We have used a magnetic accretion model to investigate the accretion flows of magnetic cataclysmic variables (mCVs) throughout a range of parameter space. The results of our numerical simulations demonstrate that broadly four types of flow are possible: discs, streams, rings and propellers. We show that the equilibrium spin periods in asynchronous mCVs, for a given orbital period and magnetic moment, occur where the flow changes from a type characterised by spin-up (i.e. disc or stream) to one characterised by spin-down (i.e. propeller or ring). 'Triple points' occur in the plane of spin-to-orbital period ratio versus magnetic moment, at which stream-disc-propeller flows or stream-ring-propeller flows can co-exist. The first of these is identified as corresponding to when the corotation radius is equal to the circularisation radius, and the second as where the corotation radius is equal to the distance from white dwarf to the L1 point. If mCVs are accreting at their equilibrium spin rates, then for a mass ratio of 0.5, those with Pspin/Porb < 0.1 will be disc-like, those with 0.1 < Pspin/Porb < 0.5 will be stream-like, and those with Pspin/Porb ~ 0.5 will be ring-like. In each case, some material is also lost from the binary in order to maintain angular momentum balance. The spin to orbital period ratio at which the systems transition between these flow types decreases as the mass ratio of the stellar components increases, and vice versa

    The optimum phase demodulator for interfering PM subcarrier signals

    Get PDF
    Optimum phase demodulator for interfering PM subcarrier signal

    A phase locked loop demodulator for television type PM signals

    Get PDF
    Phased-locked loop demodulator for television type PM signals on sinusoidal carrie

    Wetland mapping from digitized aerial photography

    Get PDF
    Computer assisted interpretation of small scale aerial imagery was found to be a cost effective and accurate method of mapping complex vegetation patterns if high resolution information is desired. This type of technique is suited for problems such as monitoring changes in species composition due to environmental factors and is a feasible method of monitoring and mapping large areas of wetlands. The technique has the added advantage of being in a computer compatible form which can be transformed into any georeference system of interest

    Forestry curriculum development at Chemeketa Community College: Methods to ensure student success

    Get PDF
    To better prepare technicians for the future workplace, the National Science Foundation created a new program in 1994 that supported attempts to improve technical education across the nation. The Advanced Technological Education (ATE) Program promotes exemplary advanced technological education at the national and regional levels through support of curriculum development and program improvement. One of the ATE Centers of Excellence, the Northwest Center for Sustainable Resources (NCSR), in Salem, Oregon, addresses improvement in natural resources education. Since its inception in 1995, the center has developed and revised curricula in forestry, fisheries, wildlife, and agriculture programs at five community colleges in Oregon, Washington, and California. The Chemeketa Community College Forest Resources Technology (FRT) program, in Salem, Oregon under funding provided by the NCSR, is undergoing extensive curriculum updating

    Disturbances in the spontaneous attribution of social meaning in schizophrenia

    Get PDF
    Background. Schizophrenia patients show disturbances on a range of tasks that assess mentalizing or 'Theory of Mind' (ToM). However, these tasks are often developmentally inappropriate, make large demands on verbal abilities and explicit problem-solving skills, and involve after-the-fact reflection as opposed to spontaneous mentalizing. Method. To address these limitations, 55 clinically stable schizophrenia out-patients and 44 healthy controls completed a validated Animations Task designed to assess spontaneous attributions of social meaning to ambiguous abstract visual stimuli. In this paradigm, 12 animations depict two geometric shapes' interacting' with each other in three conditions: (1) ToM interactions that elicit attributions of mental states to the agents, (2) Goal-Directed (GO) interactions that elicit attributions of simple actions, and (3) Random scenes in which no interaction occurs. Verbal descriptions of each animation are rated for the degree of Intentionality attributed to the agents and for accuracy. Results. Patients had lower Intentionality ratings than controls for ToM and GO scenes but the groups did not significantly differ for Random scenes. The descriptions of the patients less closely matched the situations intended by the developers of the task. Within the schizophrenia group, performance on the Animations Task showed minimal associations with clinical symptoms. Conclusions. Patients demonstrated disturbances in the spontaneous attribution of mental states to abstract visual stimuli that normally evoke such attributions. Hence, in addition to previously established impairment on mentalizing tasks that require logical inferences about others' mental states, individuals with schizophrenia show disturbances in implicit aspects of mentalizing
    corecore