5,899 research outputs found
Outbursts of Young Stellar Objects
We argue that the outbursts of the FU Orionis stars occur on timescales which
are much longer than expected from the standard disc instability model with
\alpha_{c} \gtrsim 10^{-3}. The outburst, recurrence, and rise times are
consistent with the idea that the accretion disc in these objects is truncated
at a radius R_{i} \sim 40 \rsun. In agreement with a number of previous authors
we suggest that the inner regions of the accretion discs in FU Ori objects are
evacuated by the action of a magnetic propeller anchored on the central star.
We develop an analytic solution for the steady state structure of an accretion
disc in the presence of a central magnetic torque, and present numerical
calculations to follow its time evolution. These calculations confirm that a
recurrence time that is consistent with observations can be obtained by
selecting appropriate values for viscosity and magnetic field strength.Comment: 13 pages, 7 figures, accepted by MNRA
Bond graph based sensitivity and uncertainty analysis modelling for micro-scale multiphysics robust engineering design
Components within micro-scale engineering systems are often at the limits of commercial miniaturization and this can cause unexpected behavior and variation in performance. As such, modelling and analysis of system robustness plays an important role in product development. Here schematic bond graphs are used as a front end in a sensitivity analysis based strategy for modelling robustness in multiphysics micro-scale engineering systems. As an example, the analysis is applied to a behind-the-ear (BTE) hearing aid.
By using bond graphs to model power flow through components within different physical domains of the hearing aid, a set of differential equations to describe the system dynamics is collated. Based on these equations, sensitivity analysis calculations are used to approximately model the nature and the sources of output uncertainty during system operation. These calculations represent a robustness evaluation of the current hearing aid design and offer a means of identifying potential for improved designs of multiphysics systems by way of key parameter identification
Sensitivity analysis modelling for microscale multiphysics robust engineering design
Sensitivity Analysis (SA) plays an important role in the development of any practical engineering model. It can help to reveal the sources and mechanisms of variability that provide the key to understanding system uncertainty. SA can also be used to calibrate simulation models for closer agreement with experimental results. Robust Engineering Design (RED) seeks to exploit such knowledge in the search for design solutions that are optimal in terms of performance in the face of variability.
Microscale and multiphysics problems present challenges to modelling due to their complexity, which puts increased demands on computational methods. For example, in developing a model of a piezoelectric actuator, the process of calibration is prolonged by the number of parameters that are difficult to verify with the physical device.
In the approach presented in this paper, normalised sensitivity coefficients are determined directly and accurately using the governing finite element model formulation, offering an efficient means of identifying parameters that affect the output of the model, leading to increased accuracy and knowledge of system performance in the face of variability
The steady-state structure of accretion discs in central magnetic fields
We develop a new analytic solution for the steady-state structure of a thin
accretion disc under the influence of a magnetic field that is anchored to the
central star. The solution takes a form similar to that of Shakura and Sunyaev
and tends to their solution as the magnetic moment of the star tends to zero.
As well as the Kramer's law case, we obtain a solution for a general opacity.
The effects of varying the mass transfer rate, spin period and magnetic field
of the star as well as the opacity model applied to the disc are explored for a
range of objects. The solution depends on the position of the magnetic
truncation radius. We propose a new approach for the identification of the
truncation radius and present an analytic expression for its position.Comment: 11 pages, 7 figures, accepted by MNRA
The implementation of ERP systems in Iranian manufacturing SMEs
The quest to implement Enterprise Resource
Planning (ERP) software to support all main business
functions has been actively pursued by in-house IT
departments, software vendors and third party consultancies
for over three decades. It remains a key element of many
companies’ information systems strategy in the developed
world, and increasingly, in the developing world. In the
specific context of Iranian SMEs, there has been relatively little
research on information systems in general, and very little
specifically on ERP systems projects. This paper attempts to
help address this dearth in the existing literature by examining
three case studies of ERP systems deployment in Iranian
manufacturing SMEs. It investigates the underlying
information systems strategies and examines how this has been
implemented in the core process areas of these companies. The
analysis is based on a conceptual model that combines defined
implementation phases with change dimensions and elements,
which provide the basis for the development of an
implementation framework for subsequent ERP projects in
this business and technology environment
Betsy Erkkila. The Whitman Revolution: Sex, Poetry, and Politics.
Review of Betsy Erkkila. The Whitman Revolution: Sex, Poetry, and Politics
Equilibrium spin pulsars unite neutron star populations
Many pulsars are formed with a binary companion from which they can accrete
matter. Torque exerted by accreting matter can cause the pulsar spin to
increase or decrease, and over long times, an equilibrium spin rate is
achieved. Application of accretion theory to these systems provides a probe of
the pulsar magnetic field. We compare the large number of recent torque
measurements of accreting pulsars with a high-mass companion to the standard
model for how accretion affects the pulsar spin period. We find that many long
spin period (P > 100 s) pulsars must possess either extremely weak (B < 10^10
G) or extremely strong (B > 10^14 G) magnetic fields. We argue that the
strong-field solution is more compelling, in which case these pulsars are near
spin equilibrium. Our results provide evidence for a fundamental link between
pulsars with the slowest spin periods and strong magnetic fields around
high-mass companions and pulsars with the fastest spin periods and weak fields
around low-mass companions. The strong magnetic fields also connect our pulsars
to magnetars and strong-field isolated radio/X-ray pulsars. The strong field
and old age of our sources suggests their magnetic field penetrates into the
superconducting core of the neutron star.Comment: 6 pages, 4 figures; to appear in MNRA
Cybersecurity and the Evolution of the Customer-Centric Service Desk
Cybersecurity is now seen as a central function of the
modern IT Service Desk. This article examines two case studies
of Helpdesk or Service Desk operations in different technology
eras, and highlights the recent emergence of Cybersecurity as a
critical area of Service Desk responsibilities. The article profiles
the Helpdesk operations at Glaxo Pharmaceuticals in the late
1980s and the Service Desk functions at the University of
Gloucestershire in 2019. Comparative analysis shows that whilst
the range of technologies requiring support has increased
markedly, this has been counter-balanced somewhat by the
emergence of standards and dominant products in many
technology categories. Cybersecurity, however, has emerged as
a key concern that permeates all fields of Service Desk support.
It also finds that the role of the end-user has evolved
significantly in a rapidly changing technology landscape
- …