3,441 research outputs found

    Egg Production in the Boxelder Bug \u3ci\u3eBoisea Trivittata\u3c/i\u3e (Hemiptera: Rhopalidae)

    Get PDF
    Boxelder bug females emerged from overwintering sites in the spring and rapidly provisioned eggs with yolk materials. Five discrete egg stages were identified based on egg size, protein content, and degree of chorion sclerotization. Females did not accumulate yolk materials into the egg until after melanization was completed, as unmelanized animals rarely possessed even stage 2 eggs. All adult females entering overwintering sites possessed only immature stage eggs (stage 1 and 2). The rate of egg vitellogenesis in the spring was rapid; a major change in numbers of more mature stage eggs (stage 3 and above) in the ovary occurred within approximately 6 days. Most mating pairs recovered in the field (92%, 12/13) possessed ovaries full of eggs in stages 3, 4 or 5. The remaining female contained only immature eggs of stage 1 and 2. This finding indicates that fully provisioned ovaries are not an absolute requirement for mating to occur. The signals that initiate vitellogenesis and control the movement of materials from fat body into eggs are unknown for the boxelder bug

    Wigner Distribution Functions as a Tool for Studying Gas Phase Alkali Metal Plus Noble Gas Collisions

    Get PDF
    Wave packet propagation methods are used to compute scattering Wigner Distribution Functions (WDF) for the square well potential, square barrier potential, and the H+H2 and OH+CO, and several M+Ng collisions. The scattering WDF are used to interpret how probabilities flow among various potential energy surfaces as a function of time during a collision. Positive values of the scattering WDF correspond to the addition of probability to scatter into the state that corresponds to the asymptotic limit of the potential energy surface of interest. Negative values correspond to the loss of probability to scatter into the state that corresponds to the asymptotic limit of the surface of interest, and zero values correspond to probability associated with the wave packet that is still in the interaction region. The loss of probability on one surface corresponds to the addition of probability on another surface at different times. Bands of oscillating peaks and valleys that form in the structure of the scattering WDF correspond to presence of secondary transmission or reflection with significant probability. The square well frequencies at which probability arrive in a scattering channel corresponds to the depth and width of the well. Scattering WDF were computed for the following combinations: K+He, K+Ne, K+Ar, Rb+He, Rb+Ne, Rb+Ar, Cs+Ne, and Cs+Ar. The scattering WDF revealed that as the mass of the noble gas increased, a significant proportion of probability was transferred from the 2P3/2 pump state to the 2P1/2 lasing state for a larger number of total angular momentum values. Similarily, as the mass of the alkali metal decreased, there was a reduced transfer of probability to make a transition from the 2P3/2 state to the 2P1/2 state. The reduced probability to make a transition from the 2P3/2 to the 2P1/2 manifolds for the M+He collisions is compensated by the large average velocity of He

    Janis-Newman-Winicour and Wyman solutions are the same

    Get PDF
    We show that the well-known most general static and spherically symmetric exact solution to the Einstein-massless scalar equations given by Wyman is the same as one found by Janis, Newman and Winicour several years ago. We obtain the energy associated with this spacetime and find that the total energy for the case of the purely scalar field is zero.Comment: 9 pages, LaTex, no figures, misprints corrected, to appear in Int. J. Mod. Phys.

    Interaction of hemojuvelin with neogenin results in iron accumulation in human embryonic kidney 293 cells

    Get PDF
    Type 2 hereditary hemochromatosis (HH) or juvenile hemochromatosis is an early onset, genetically heterogeneous, autosomal recessive disorder of iron overload. Type 2A HH is caused by mutations in the recently cloned hemojuvelin gene (HJV; also called HFE2) (Papanikolaou, G., Samuels, M. E., Ludwig, E. H., MacDonald, M. L., Franchini, P. L., Dube, M. P., Andres, L., MacFarlane, J., Sakellaropoulos, N., Politou, M., Nemeth, E., Thompson, J., Risler, J. K., Zaborowska, C., Babakaiff, R., Radomski, C. C., Pape, T. D., Davidas, O., Christakis, J., Brissot, P., Lockitch, G., Ganz, T., Hayden, M. R., and Goldberg, Y. P. (2004) Nat. Genet. 36, 77–82), whereas Type 2B HH is caused by mutations in hepcidin. HJV is highly expressed in both skeletal muscle and liver. Mutations in HJV are implicated in the majority of diagnosed juvenile hemochromatosis patients. In this study, we stably transfected HJV cDNA into human embryonic kidney 293 cells and characterized the processing of HJV and its effect on iron homeostasis. Our results indicate that HJV is a glycosylphosphatidylinositol-linked protein and undergoes a partial autocatalytic cleavage during its intracellular processing. HJV co-immunoprecipitated with neogenin, a receptor involved in a variety of cellular signaling processes. It did not interact with the closely related receptor DCC (deleted in Colon Cancer). In addition, the HJV G320V mutant implicated in Type 2A HH did not co-immunoprecipitate with neogenin. Immunoblot analysis of ferritin levels and transferrin-55Fe accumulation studies indicated that the HJV-induced increase in intracellular iron levels in human embryonic kidney 293 cells is dependent on the presence of neogenin in the cells, thus linking these two proteins to intracellular iron homeostasis

    Effects of jamming on non-equilibrium transport times in nano-channels

    Full text link
    Many biological channels perform highly selective transport without direct input of metabolic energy and without transitions from a 'closed' to an 'open' state during transport. Mechanisms of selectivity of such channels serve as an inspiration for creation of artificial nano-molecular sorting devices and bio-sensors. To elucidate the transport mechanisms, it is important to understand the transport on the single molecule level in the experimentally relevant regime when multiple particles are crowded in the channel. In this paper we analyze the effects of inter-particle crowding on the non-equilibrium transport times through a finite-length channel by means of analytical theory and computer simulations
    • …
    corecore