588 research outputs found

    Efficacy of ImageJ in the assessment of apoptosis

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>To verify the efficacy of ImageJ 1.43 n in determining the extent of apoptosis which is a complex and multistep process.</p> <p>Study Design</p> <p>Cisplatin in different concentrations was used to induce apoptosis in cultured Hep2 cells. Cell viability assay and nuclear image analysis of stained Hep2 cells were used to discriminate apoptotic cells and cells suspected to be undergoing apoptosis from control cells based on parameters such as nuclear area, circularity, perimeter and nuclear area factor (NAF), in association with visual morphology.</p> <p>Results</p> <p>Image analysis revealed a progressive and highly significant decrease in nuclear area factor detected in apoptotic cells and in cells suspected of undergoing apoptosis compared to the control cells (P-values < 0.01). Some of the other studied parameters showed also the same trend. This decrease was assumed to indicate DNA loss. Image analysis results correlated positively and significantly with the results obtained by cell viability assay (R = 0.958, P-value = 0.042). NAF was the most reliable parameter in assessment of apoptosis.</p> <p>Conclusion</p> <p>Nuclear area factor can be calculated using powerful free and open-source software. Consequently, a quantitative measure of apoptosis can be obtained that is linked to morphological changes. ImageJ 1.43 n may therefore provide a useful tool for the assessment and discrimination of apoptotic cells.</p> <p>Virtual slides</p> <p>The virtual slide(s) for this article can be found here:</p> <p><url>http://www.diagnosticpathology.diagnomx.eu/vs/5929043086367338</url></p

    Development of a 2,4-diaminothiazole series for the treatment of human African trypanosomiasis highlights the importance of static-cidal screening of analogues

    Get PDF
    While treatment options for human African trypanosomiasis (HAT) have improved significantly, there is still a need for new drugs with eradication now a realistic possibility. Here, we report the development of 2,4-diaminothiazoles that demonstrate significant potency against Trypanosoma brucei, the causative agent of HAT. Using phenotypic screening to guide structure-activity relationships, potent drug-like inhibitors were developed. Proof of concept was established in an animal model of the hemolymphatic stage of HAT. To treat the meningoencephalitic stage of infection, compounds were optimized for pharmacokinetic properties, including blood-brain barrier penetration. However, in vivo efficacy was not achieved, in part due to compounds evolving from a cytocidal to a cytostatic mechanism of action. Subsequent studies identified a nonessential kinase involved in the inositol biosynthesis pathway as the molecular target of these cytostatic compounds. These studies highlight the need for cytocidal drugs for the treatment of HAT and the importance of static-cidal screening of analogues

    Clioquinol and pyrrolidine dithiocarbamate complex with copper to form proteasome inhibitors and apoptosis inducers in human breast cancer cells

    Get PDF
    INTRODUCTION: A physiological feature of many tumor tissues and cells is the tendency to accumulate high concentrations of copper. While the precise role of copper in tumors is cryptic, copper, but not other trace metals, is required for angiogenesis. We have recently reported that organic copper-containing compounds, including 8-hydroxyquinoline-copper(II) and 5,7-dichloro-8-hydroxyquinoline-copper(II), comprise a novel class of proteasome inhibitors and tumor cell apoptosis inducers. In the current study, we investigate whether clioquinol (CQ), an analog of 8-hydroxyquinoline and an Alzheimer's disease drug, and pyrrolidine dithiocarbamate (PDTC), a known copper-binding compound and antioxidant, can interact with copper to form cancer-specific proteasome inhibitors and apoptosis inducers in human breast cancer cells. Tetrathiomolybdate (TM), a strong copper chelator currently being tested in clinical trials, is used as a comparison. METHODS: Breast cell lines, normal, immortalized MCF-10A, premalignant MCF10AT1K.cl2, and malignant MCF10DCIS.com and MDA-MB-231, were treated with CQ or PDTC with or without prior interaction with copper, followed by measurement of proteasome inhibition and cell death. Inhibition of the proteasome was determined by levels of the proteasomal chymotrypsin-like activity and ubiquitinated proteins in protein extracts of the treated cells. Apoptotic cell death was measured by morphological changes, Hoechst staining, and poly(ADP-ribose) polymerase cleavage. RESULTS: When in complex with copper, both CQ and PDTC, but not TM, can inhibit the proteasome chymotrypsin-like activity, block proliferation, and induce apoptotic cell death preferentially in breast cancer cells, less in premalignant breast cells, but are non-toxic to normal/non-transformed breast cells at the concentrations tested. In contrast, CQ, PDTC, TM or copper alone had no effects on any of the cells. Breast premalignant or cancer cells that contain copper at concentrations similar to those found in patients, when treated with just CQ or PDTC alone, but not TM, undergo proteasome inhibition and apoptosis. CONCLUSION: The feature of breast cancer cells and tissues to accumulate copper can be used as a targeting method for anticancer therapy through treatment with novel compounds such as CQ and PDTC that become active proteasome inhibitors and breast cancer cell killers in the presence of copper

    Using a Non-Image-Based Medium-Throughput Assay for Screening Compounds Targeting N-myristoylation in Intracellular Leishmania Amastigotes

    Get PDF
    We have refined a medium-throughput assay to screen hit compounds for activity against N-myristoylation in intracellular amastigotes of Leishmania donovani. Using clinically-relevant stages of wild type parasites and an Alamar blue-based detection method, parasite survival following drug treatment of infected macrophages is monitored after macrophage lysis and transformation of freed amastigotes into replicative extracellular promastigotes. The latter transformation step is essential to amplify the signal for determination of parasite burden, a factor dependent on equivalent proliferation rate between samples. Validation of the assay has been achieved using the anti-leishmanial gold standard drugs, amphotericin B and miltefosine, with EC50 values correlating well with published values. This assay has been used, in parallel with enzyme activity data and direct assay on isolated extracellular amastigotes, to test lead-like and hit-like inhibitors of Leishmania Nmyristoyl transferase (NMT). These were derived both from validated in vivo inhibitors of Trypanosoma brucei NMT and a recent high-throughput screen against L. donovani NMT. Despite being a potent inhibitor of L. donovani NMT, the activity of the lead T. brucei NMT inhibitor (DDD85646) against L. donovani amastigotes is relatively poor. Encouragingly, analogues of DDD85646 show improved translation of enzyme to cellular activity. In testing the high-throughput L. donovani hits, we observed macrophage cytotoxicity with compounds from two of the four NMT-selective series identified, while all four series displayed low enzyme to cellular translation, also seen here with the T. brucei NMT inhibitors. Improvements in potency and physicochemical properties will be required to deliver attractive lead-like Leishmania NMT inhibitors
    corecore