220 research outputs found

    Langevin equation with scale-dependent noise

    Full text link
    A new wavelet based technique for the perturbative solution of the Langevin equation is proposed. It is shown that for the random force acting in a limited band of scales the proposed method directly leads to a finite result with no renormalization required. The one-loop contribution to the Kardar-Parisi-Zhang equation Green function for the interface growth is calculated as an example.Comment: LaTeX, 5 page

    Equation of the field lines of an axisymmetric multipole with a source surface

    Get PDF
    Optical spectropolarimeters can be used to produce maps of the surface magnetic fields of stars and hence to determine how stellar magnetic fields vary with stellar mass, rotation rate, and evolutionary stage. In particular, we now can map the surface magnetic fields of forming solar-like stars, which are still contracting under gravity and are surrounded by a disk of gas and dust. Their large scale magnetic fields are almost dipolar on some stars, and there is evidence for many higher order multipole field components on other stars. The availability of new data has renewed interest in incorporating multipolar magnetic fields into models of stellar magnetospheres. I describe the basic properties of axial multipoles of arbitrary degree ℓ and derive the equation of the field lines in spherical coordinates. The spherical magnetic field components that describe the global stellar field topology are obtained analytically assuming that currents can be neglected in the region exterior to the star, and interior to some fixed spherical equipotential surface. The field components follow from the solution of Laplace’s equation for the magnetostatic potential

    Dispersion Coefficients by a Field-Theoretic Renormalization of Fluid Mechanics

    Full text link
    We consider subtle correlations in the scattering of fluid by randomly placed obstacles, which have been suggested to lead to a diverging dispersion coefficient at long times for high Peclet numbers, in contrast to finite mean-field predictions. We develop a new master equation description of the fluid mechanics that incorporates the physically relevant fluctuations, and we treat those fluctuations by a renormalization group procedure. We find a finite dispersion coefficient at low volume fraction of disorder and high Peclet numbers.Comment: 4 pages, 1 figure; to appear in Phys. Rev. Let

    Notes about Passive Scalar in Large-Scale Velocity Field

    Full text link
    We consider advection of a passive scalar theta(t,r) by an incompressible large-scale turbulent flow. In the framework of the Kraichnan model the whole PDF's (probability distribution functions) for the single-point statistics of theta and for the passive scalar difference theta(r_1)-theta(r_2) (for separations r_1-r_2 lying in the convective interval) are found.Comment: 19 pages, RevTe

    Defect generation and deconfinement on corrugated topographies

    Full text link
    We investigate topography-driven generation of defects in liquid crystals films coating frozen surfaces of spatially varying Gaussian curvature whose topology does not automatically require defects in the ground state. We study in particular disclination-unbinding transitions with increasing aspect ratio for a surface shaped as a Gaussian bump with an hexatic phase draped over it. The instability of a smooth ground state texture to the generation of a single defect is also discussed. Free boundary conditions for a single bump are considered as well as periodic arrays of bumps. Finally, we argue that defects on a bump encircled by an aligning wall undergo sharp deconfinement transitions as the aspect ratio of the surface is lowered.Comment: 24 page

    Exact Resummations in the Theory of Hydrodynamic Turbulence: I The Ball of Locality and Normal Scaling

    Full text link
    This paper is the first in a series of three papers that aim at understanding the scaling behaviour of hydrodynamic turbulence. We present in this paper a perturbative theory for the structure functions and the response functions of the hydrodynamic velocity field in real space and time. Starting from the Navier-Stokes equations (at high Reynolds number Re) we show that the standard perturbative expansions that suffer from infra-red divergences can be exactly resummed using the Belinicher-L'vov transformation. After this exact (partial) resummation it is proven that the resulting perturbation theory is free of divergences, both in large and in small spatial separations. The hydrodynamic response and the correlations have contributions that arise from mediated interactions which take place at some space- time coordinates. It is shown that the main contribution arises when these coordinates lie within a shell of a "ball of locality" that is defined and discussed. We argue that the real space-time formalism developed here offers a clear and intuitive understanding of every diagram in the theory, and of every element in the diagrams. One major consequence of this theory is that none of the familiar perturbative mechanisms may ruin the classical Kolmogorov (K41) scaling solution for the structure functions. Accordingly, corrections to the K41 solutions should be sought in nonperturbative effects. These effects are the subjects of papers II and III in this series, that will propose a mechanism for anomalous scaling in turbulence, which in particular allows multiscaling of the structure functions.Comment: PRE in press, 18 pages + 6 figures, REVTeX. The Eps files of figures will be FTPed by request to [email protected]

    Multiscale theory of turbulence in wavelet representation

    Full text link
    We present a multiscale description of hydrodynamic turbulence in incompressible fluid based on a continuous wavelet transform (CWT) and a stochastic hydrodynamics formalism. Defining the stirring random force by the correlation function of its wavelet components, we achieve the cancellation of loop divergences in the stochastic perturbation expansion. An extra contribution to the energy transfer from large to smaller scales is considered. It is shown that the Kolmogorov hypotheses are naturally reformulated in multiscale formalism. The multiscale perturbation theory and statistical closures based on the wavelet decomposition are constructed.Comment: LaTeX, 27 pages, 3 eps figure

    Exact Resummations in the Theory of Hydrodynamic Turbulence: II A Ladder to Anomalous Scaling

    Full text link
    In paper I of this series on fluid turbulence we showed that exact resummations of the perturbative theory of the structure functions of velocity differences result in a finite (order by order) theory. These findings exclude any known perturbative mechanism for anomalous scaling of the velocity structure functions. In this paper we continue to build the theory of turbulence and commence the analysis of nonperturbative effects that form the analytic basis of anomalous scaling. Starting from the Navier-Stokes equations (at high Reynolds number Re) we discuss the simplest examples of the appearance of anomalous exponents in fluid mechanics. These examples are the nonlinear (four-point) Green's function and related quantities. We show that the renormalized perturbation theory for these functions contains ``ladder`` diagrams with (convergent!) logarithmic terms that sum up to anomalous exponents. Using a new sum rule which is derived here we calculate the leading anomalous exponent and show that it is critical in a sense made precise below. This result opens up the possibility of multiscaling of the structure functions with the outer scale of turbulence as the renormalization length. This possibility will be discussed in detail in the concluding paper III of this series.Comment: PRE in press, 15 pages + 21 figures, REVTeX, The Eps files of figures will be FTPed by request to [email protected]

    Statistical Description of Acoustic Turbulence

    Full text link
    We develop expressions for the nonlinear wave damping and frequency correction of a field of random, spatially homogeneous, acoustic waves. The implications for the nature of the equilibrium spectral energy distribution are discussedComment: PRE, Submitted. REVTeX, 16 pages, 3 figures (not included) PS Source of the paper with figures avalable at http://lvov.weizmann.ac.il/onlinelist.htm

    Numerical study of the spherically-symmetric Gross-Pitaevskii equation in two space dimensions

    Full text link
    We present a numerical study of the time-dependent and time-independent Gross-Pitaevskii (GP) equation in two space dimensions, which describes the Bose-Einstein condensate of trapped bosons at ultralow temperature with both attractive and repulsive interatomic interactions. Both time-dependent and time-independent GP equations are used to study the stationary problems. In addition the time-dependent approach is used to study some evolution problems of the condensate. Specifically, we study the evolution problem where the trap energy is suddenly changed in a stable preformed condensate. In this case the system oscillates with increasing amplitude and does not remain limited between two stable configurations. Good convergence is obtained in all cases studied.Comment: 9 latex pages, 7 postscript figures, To appear in Phys. Rev.
    • …
    corecore