14 research outputs found

    Dose-Additive Carcinogenicity of a Defined Mixture of “Dioxin-like Compounds”

    Get PDF
    Use of the dioxin toxic equivalency factor (TEF) approach in human risk assessments assumes that the combined effects of dioxin-like compounds in a mixture can be predicted based on a potency-adjusted dose-additive combination of constituents of the mixture. In this study, we evaluated the TEF approach in experimental 2-year rodent cancer bioassays with female Harlan Sprague-Dawley rats receiving 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 3,3′,4,4′,5-pentachlorobiphenyl (PCB-126), 2,3,4,7,8-pentachlorodibenzofuran (PeCDF), or a mixture of the three compounds. Statistically based dose–response modeling indicated that the shape of the dose–response curves for hepatic, lung, and oral mucosal neoplasms was the same in studies of the three individual chemicals and the mixture. In addition, the dose response for the mixture could be predicted from a combination of the potency-adjusted doses of the individual compounds. Finally, we showed that use of the current World Health Organization dioxin TEF values adequately predicted the increased incidence of liver tumors (hepatocellular adenoma and cholangiocarcinoma) induced by exposure to the mixture. These data support the use of the TEF approach for dioxin cancer risk assessments

    Augmented Lung Inflammation Protects against Influenza A Pneumonia

    Get PDF
    Influenza pneumonia causes high mortality every year, and pandemic episodes kill millions of people. Influenza-related mortality has been variously ascribed to an ineffective host response that fails to limit viral replication, an excessive host inflammatory response that results in lung injury and impairment of gas exchange, or to bacterial superinfection. We sought to determine whether lung inflammation promoted or impaired host survival in influenza pneumonia.To distinguish among these possible causes of influenza-related death, we induced robust lung inflammation by exposing mice to an aerosolized bacterial lysate prior to challenge with live virus. The treatment induced expression of the inflammatory cytokines IL-6 and TNF in bronchoalveolar lavage fluid 8- and 40-fold greater, respectively, than that caused by lethal influenza infection. Yet, this augmented inflammation was associated with striking resistance to host mortality (0% vs 90% survival, p = 0.0001) and reduced viral titers (p = 0.004). Bacterial superinfection of virus infected lungs was not observed. When mice were repeatedly exposed to the bacterial lysate, as would be clinically desirable during an influenza epidemic, there was no tachyphylaxis of the induced viral resistance. When the bacterial lysate was administered after the viral challenge, there was still some mortality benefit, and when ribavirin was added to the aerosolized bacterial lysate, host survival was synergistically improved (0% vs 93.3% survival, p<0.0001).Together, these data indicate that innate immune resistance to influenza can be effectively stimulated, and suggest that ineffective rather than excessive inflammation is the major cause of mortality in influenza pneumonia

    Synergistic TLR2/6 and TLR9 Activation Protects Mice against Lethal Influenza Pneumonia

    Get PDF
    Lower respiratory tract infections caused by influenza A continue to exact unacceptable worldwide mortality, and recent epidemics have emphasized the importance of preventative and containment strategies. We have previously reported that induction of the lungs' intrinsic defenses by aerosolized treatments can protect mice against otherwise lethal challenges with influenza A virus. More recently, we identified a combination of Toll like receptor (TLR) agonists that can be aerosolized to protect mice against bacterial pneumonia. Here, we tested whether this combination of synthetic TLR agonists could enhance the survival of mice infected with influenza A/HK/8/68 (H3N2) or A/California/04/2009 (H1N1) influenza A viruses. We report that the TLR treatment enhanced survival whether given before or after the infectious challenge, and that protection tended to correlate with reductions in viral titer 4 d after infection. Surprisingly, protection was not associated with induction of interferon gene expression. Together, these studies suggest that synergistic TLR interactions can protect against influenza virus infections by mechanisms that may provide the basis for novel therapeutics

    The Environmental Pollutant 1,1-Dichloro-2,2-bis ( p

    No full text

    Effect of cell phone radiofrequency radiation on body temperature in rodents: Pilot studies of the National Toxicology Program's reverberation chamber exposure system

    No full text
    Radiofrequency radiation (RFR) causes heating, which can lead to detrimental biological effects. To characterize the effects of RFR exposure on body temperature in relation to animal size and pregnancy, a series of short‐term toxicity studies was conducted in a unique RFR exposure system. Young and old B6C3F1 mice and young, old, and pregnant Harlan Sprague‐Dawley rats were exposed to Global System for Mobile Communication (GSM) or Code Division Multiple Access (CDMA) RFR (rats = 900 MHz, mice = 1,900 MHz) at specific absorption rates (SARs) up to 12 W/kg for approximately 9 h a day for 5 days. In general, fewer and less severe increases in body temperature were observed in young than in older rats. SAR‐dependent increases in subcutaneous body temperatures were observed at exposures ≥6 W/kg in both modulations. Exposures of  ≥10 W/kg GSM or CDMA RFR induced excessive increases in body temperature, leading to mortality. There was also a significant increase in the number of resorptions in pregnant rats at 12 W/kg GSM RFR. In mice, only sporadic increases in body temperature were observed regardless of sex or age when exposed to GSM or CDMA RFR up to 12 W/kg. These results identified SARs at which measurable RFR‐mediated thermal effects occur, and were used in the selection of exposures for subsequent toxicology and carcinogenicity studies. Bioelectromagnetics. 39:190–199, 2018. © 2018 The Authors. Bioelectromagnetics Published by Wiley Periodicals, Inc.ISSN:0197-8462ISSN:1521-186
    corecore