10,556 research outputs found
A study of commuter airplane design optimization
Problems of commuter airplane configuration design were studied to affect a minimization of direct operating costs. Factors considered were the minimization of fuselage drag, methods of wing design, and the estimated drag of an airplane submerged in a propellor slipstream; all design criteria were studied under a set of fixed performance, mission, and stability constraints. Configuration design data were assembled for application by a computerized design methodology program similar to the NASA-Ames General Aviation Synthesis Program
Predicting the frequencies of diverse exo-planetary systems
Extrasolar planetary systems range from hot Jupiters out to icy comet belts
more distant than Pluto. We explain this diversity in a model where the mass of
solids in the primordial circumstellar disk dictates the outcome. The star
retains measures of the initial heavy-element (metal) abundance that can be
used to map solid masses onto outcomes, and the frequencies of all classes are
correctly predicted. The differing dependences on metallicity for forming
massive planets and low-mass cometary bodies are also explained. By
extrapolation, around two-thirds of stars have enough solids to form Earth-like
planets, and a high rate is supported by the first detections of low-mass
exo-planets.Comment: 5 pages, 2 figures; accepted by MNRA
Differentiating criminal networks in the illegal wildlife trade: organized, corporate and disorganized crime
Historically, the poaching of wildlife was portrayed as a small-scale local activity in which only small numbers of wildlife would be smuggled illegally by collectors or opportunists. Nowadays, this image has changed: criminal networks are believed to be highly involved in wildlife trafficking, which has become a significant area of illicit activity. Even though wildlife trafficking has become accepted as a major area of crime and an important topic and criminologists have examined a variety of illegal wildlife markets, research that specifically focusses on the involvement of different criminal networks and their specific nature is lacking. The concept of a ‘criminal network’ or ‘serious organized crime’ is amorphous – getting used interchangeably and describes all crime that is structured rather than solely reflecting crime that fits within normative definitions of ‘organized’ crime. In reality, criminal networks are diverse. As such, we propose categories of criminal networks that are evidenced in the literature and within our own fieldwork: (1) organized crime groups (2) corporate crime groups and (3) disorganized criminal networks. Whereas there are instances when these groups act alone, this article will (also) discuss the overlap and interaction that occurs between our proposed categories and discuss the complicated nature of the involved criminal networks as well as predictions as to the future of these networks
Search for long lived charged massive particles in pp collisions at s-hat = 1.8TeV
We report a search for the production of long-lived charged massive particles in a data sample of 90   pb-1 of √s=1.8   TeV pp̅ collisions recorded by the Collider Detector at Fermilab. The search uses the muonlike penetration and anomalously high ionization energy loss signature expected for such a particle to discriminate it from backgrounds. The data are found to agree with background expectations, and cross section limits of O(1) pb are derived using two reference models, a stable quark and a stable scalar lepton
How do analysts forecast earnings?
This paper examines the question of how analysts forecast earnings. We examine the determinants of analysts forecasts of both short and long run earnings. The paper is motivated by the importance of analyst forecasts as proxies for expected earnings, which is accompanied by a large literature on the properties of analysts forecast errors but limited evidence on the first order effecthow analysts produce the earnings forecasts. There is an implicit assumption permeating the analyst forecast literature that analysts use the fundamental analysis based forecasting frameworks laid out in the leading business valuation texts. These forecasting frameworks evaluate a firms future prospects in terms of sets of factors relating to the firms industry, strategy, and financial information. Prior studies generally assume the analysts use this business analysis framework for forecasting. The contribution of this study is to explicitly test this proposition. For 28,261, 21,051 and 25,053 US firm-year observations for analysts 1 and 2 year ahead forecasts and long run EPS forecasts, our key findings suggest that analysts anchor on historical EPS to forecast short and long run EPS consistent with the recommendations in the business analysis frameworks. However, inconsistent with the recommended fundamental analysis frameworks, our results suggest that analysts use the forecasting framework only in the long run, to obtain a long-run growth rate to apply to the historical EPS reported by management. Overall, the results suggest that analysts believe their best EPS forecast is the current historical EPS reported by management
Attosecond sampling of arbitrary optical waveforms
Advances in the generation of ultrashort laser pulses, and the emergence of new research areas such as attosecond science, nanoplasmonics, coherent control, and multidimensional spectroscopy, have led to the need for a new class of ultrafast metrology that can measure the electric field of complex optical waveforms spanning the ultraviolet to the infrared. Important examples of such waveforms are those produced by spectral control of ultrabroad bandwidth pulses, or by Fourier synthesis. These are typically tailored for specific purposes, such as to increase the photon energy and flux of high-harmonic radiation, or to control dynamical processes by steering electron dynamics on subcycle time scales. These applications demand a knowledge of the full temporal evolution of the field. Conventional pulse measurement techniques that provide estimates of the relative temporal or spectral phase are unsuited to measure such waveforms. Here we experimentally demonstrate a new, all-optical method for directly measuring the electric field of arbitrary ultrafast optical waveforms. Our method is based on high-harmonic generation (HHG) driven by a field that is the collinear superposition of the waveform to be measured with a stronger probe laser pulse. As the delay between the pulses is varied, we show that the field of the unknown waveform is mapped to energy shifts in the high-harmonic spectrum, allowing a direct, accurate, and rapid retrieval of the electric field with subcycle temporal resolution at the location of the HHG
Theoretical Performance Characteristics of Sharp Lip Inlets at Subsonic Speeds
A method is presented for the estimation of the subsonic-flight-speed characteristics of sharp-lip inlets applicable to supersonic aircraft. The analysis, based on a simple momentum balance consideration, permits the computation of inlet pressure recovery - mass-flow relations and additive-drag coefficients for forward velocities from zero to the speed of sound. The penalties for operation of a sharp-lip inlet at velocity ratios other than 1.0 may be severe; at lower velocity ratios an additive drag is incurred that is not cancelled by lip suction, while at higher velocity ratios, unavoidable losses in inlet total pressure will result. In particular, at the take-off condition, the total pressure and the mass flow for a choked inlet are only 79 percent of the values ideally attainable with a rounded lip. Experimental data obtained at zero speed with a sharp-lip supersonic inlet model were in substantial agreement with the theoretical results
Multi-Epoch Observations of HD69830: High Resolution Spectroscopy and Limits to Variability
The main-sequence solar-type star HD69830 has an unusually large amount of
dusty debris orbiting close to three planets found via the radial velocity
technique. In order to explore the dynamical interaction between the dust and
planets, we have performed multi-epoch photometry and spectroscopy of the
system over several orbits of the outer dust. We find no evidence for changes
in either the dust amount or its composition, with upper limits of 5-7% (1
per spectral element) on the variability of the {\it dust spectrum}
over 1 year, 3.3% (1 ) on the broad-band disk emission over 4 years,
and 33% (1 ) on the broad-band disk emission over 24 years. Detailed
modeling of the spectrum of the emitting dust indicates that the dust is
located outside of the orbits of the three planets and has a composition
similar to main-belt, C-type asteroids asteroids in our solar system.
Additionally, we find no evidence for a wide variety of gas species associated
with the dust. Our new higher SNR spectra do not confirm our previously claimed
detection of HO ice leading to a firm conclusion that the debris can be
associated with the break-up of one or more C-type asteroids formed in the dry,
inner regions of the protoplanetary disk of the HD69830 system. The modeling of
the spectral energy distribution and high spatial resolution observations in
the mid-infrared are consistent with a 1 AU location for the emitting
material
Recommended from our members
Eight billion asteroids in the Oort cloud
The Oort cloud is usually thought of as a collection of icy comets inhabiting the outer reaches of the Solar system, but this picture is incomplete. We use simulations of the formation of the Oort cloud to show that ∼4 per cent of the small bodies in the Oort cloud should have formed within 2.5 au of the Sun, and hence be ice-free rock-iron bodies. If we assume that these Oort cloud asteroids have the same size distribution as their cometary counterparts, the Large Synoptic Survey Telescope should find roughly a dozen Oort cloud asteroids during 10 years of operations. Measurement of the asteroid fraction within the Oort cloud can serve as an excellent test of the Solar system's formation and dynamical history. Oort cloud asteroids could be of particular concern as impact hazards as their high mass density, high impact velocity, and low visibility make them both hard to detect and hard to divert or destroy. However, they should be a rare class of object, and we estimate globally catastrophic collisions should only occur about once per billion years.AS andMWare supported by the European
Union through ERC grant number 279973. DV is supported
by the European Union through ERC grant number 320964.This is the final published version. It first appeared at http://mnras.oxfordjournals.org/content/446/2/2059
Morphology of the very inclined debris disk around HD 32297
Direct imaging of circumstellar disks at high angular resolution is mandatory
to provide morphological information that bring constraints on their
properties, in particular the spatial distribution of dust. New techniques
combining observing strategy and data processing now allow very high contrast
imaging with 8-m class ground-based telescopes (10^-4 to 10^-5 at ~1") and
complement space telescopes while improving angular resolution at near infrared
wavelengths. We carried out a program at the VLT with NACO to image known
debris disks with higher angular resolution in the near IR than ever before in
order to study morphological properties and ultimately to detect signpost of
planets. The observing method makes use of advanced techniques: Adaptive
Optics, Coronagraphy and Differential Imaging, a combination designed to
directly image exoplanets with the upcoming generation of "planet finders" like
GPI (Gemini Planet Imager) and SPHERE (Spectro-Polarimetric High contrast
Exoplanet REsearch). Applied to extended objects like circumstellar disks, the
method is still successful but produces significant biases in terms of
photometry and morphology. We developed a new model-matching procedure to
correct for these biases and hence to bring constraints on the morphology of
debris disks. From our program, we present new images of the disk around the
star HD 32297 obtained in the H (1.6mic) and Ks (2.2mic) bands with an
unprecedented angular resolution (~65 mas). The images show an inclined thin
disk detected at separations larger than 0.5-0.6". The modeling stage confirms
a very high inclination (i=88{\deg}) and the presence of an inner cavity inside
r_0~110AU. We also found that the spine (line of maximum intensity along the
midplane) of the disk is curved and we attributed this feature to a large
anisotropic scattering factor (g~0.5, valid for an non-edge on disk). Abridged
...Comment: 12 pages, 10 figures, accepted for publication in Astronomy and
Astrophysic
- …