9,066 research outputs found
Coplanar Circumbinary Debris Disks
We present resolved Herschel images of circumbinary debris disks in the alpha
CrB (HD139006) and beta Tri (HD13161) systems. We find that both disks are
consistent with being aligned with the binary orbital planes. Though secular
perturbations from the binary can align the disk, in both cases the alignment
time at the distances at which the disk is resolved is greater than the stellar
age, so we conclude that the coplanarity was primordial. Neither disk can be
modelled as a narrow ring, requiring extended radial distributions. To satisfy
both the Herschel and mid-IR images of the alpha CrB disk, we construct a model
that extends from 1-300AU, whose radial profile is broadly consistent with a
picture where planetesimal collisions are excited by secular perturbations from
the binary. However, this model is also consistent with stirring by other
mechanisms, such as the formation of Pluto-sized objects. The beta Tri disk
model extends from 50-400AU. A model with depleted (rather than empty) inner
regions also reproduces the observations and is consistent with binary and
other stirring mechanisms. As part of the modelling process, we find that the
Herschel PACS beam varies by as much as 10% at 70um and a few % at 100um. The
70um variation can therefore hinder image interpretation, particularly for
poorly resolved objects. The number of systems in which circumbinary debris
disk orientations have been compared with the binary plane is now four. More
systems are needed, but a picture in which disks around very close binaries
(alpha CrB, beta Tri, and HD 98800, with periods of a few weeks to a year) are
aligned, and disks around wider binaries (99 Her, with a 50 yr period) are
misaligned, may be emerging. This picture is qualitatively consistent with the
expectation that the protoplanetary disks from which the debris emerged are
more likely to be aligned if their binaries have shorter periods.Comment: accepted to MNRA
ALMA and Herschel Observations of the Prototype Dusty and Polluted White Dwarf G29-38
ALMA Cycle 0 and Herschel PACS observations are reported for the prototype,
nearest, and brightest example of a dusty and polluted white dwarf, G29-38.
These long wavelength programs attempted to detect an outlying, parent
population of bodies at 1-100 AU, from which originates the disrupted
planetesimal debris that is observed within 0.01 AU and which exhibits L_IR/L =
0.039. No associated emission sources were detected in any of the data down to
L_IR/L ~ 1e-4, generally ruling out cold dust masses greater than 1e24 - 1e25 g
for reasonable grain sizes and properties in orbital regions corresponding to
evolved versions of both asteroid and Kuiper belt analogs. Overall, these null
detections are consistent with models of long-term collisional evolution in
planetesimal disks, and the source regions for the disrupted parent bodies at
stars like G29-38 may only be salient in exceptional circumstances, such as a
recent instability. A larger sample of polluted white dwarfs, targeted with the
full ALMA array, has the potential to unambiguously identify the parent
source(s) of their planetary debris.Comment: 8 pages, 5 figures and 1 table. Accepted to MNRA
Discovery of the Fomalhaut C debris disc
Fomalhaut is one of the most interesting and well studied nearby stars,
hosting at least one planet, a spectacular debris ring, and two distant
low-mass stellar companions (TW PsA and LP 876-10, a.k.a. Fomalhaut B & C). We
observed both companions with Herschel, and while no disc was detected around
the secondary, TW PsA, we have discovered the second debris disc in the
Fomalhaut system, around LP 876-10. This detection is only the second case of
two debris discs seen in a multiple system, both of which are relatively wide
(3000 AU for HD 223352/40 and 158 kAU [0.77 pc] for Fomalhaut/LP
876-10). The disc is cool (24K) and relatively bright, with a fractional
luminosity , and represents the rare
observation of a debris disc around an M dwarf. Further work should attempt to
find if the presence of two discs in the Fomalhaut system is coincidental,
perhaps simply due to the relatively young system age of 440 Myr, or if the
stellar components have dynamically interacted and the system is even more
complex than it currently appears.Comment: Published in MNRAS Letters. Merry Xma
A target repurposing approach identifies N-myristoyltransferase as a new candidate drug target in filarial nematodes
Myristoylation is a lipid modification involving the addition of a 14-carbon unsaturated fatty acid, myristic acid, to the N-terminal glycine of a subset of proteins, a modification that promotes their binding to cell membranes for varied biological functions. The process is catalyzed by myristoyl-CoA:protein N-myristoyltransferase (NMT), an enzyme which has been validated as a drug target in human cancers, and for infectious diseases caused by fungi, viruses and protozoan parasites. We purified Caenorhabditis elegans and Brugia malayi NMTs as active recombinant proteins and carried out kinetic analyses with their essential fatty acid donor, myristoyl-CoA and peptide substrates. Biochemical and structural analyses both revealed that the nematode enzymes are canonical NMTs, sharing a high degree of conservation with protozoan NMT enzymes. Inhibitory compounds that target NMT in protozoan species inhibited the nematode NMTs with IC50 values of 2.5-10 nM, and were active against B. malayi microfilariae and adult worms at 12.5 µM and 50 µM respectively, and C. elegans (25 µM) in culture. RNA interference and gene deletion in C. elegans further showed that NMT is essential for nematode viability. The effects observed are likely due to disruption of the function of several downstream target proteins. Potential substrates of NMT in B. malayi are predicted using bioinformatic analysis. Our genetic and chemical studies highlight the importance of myristoylation in the synthesis of functional proteins in nematodes and have shown for the first time that NMT is required for viability in parasitic nematodes. These results suggest that targeting NMT could be a valid approach for the development of chemotherapeutic agents against nematode diseases including filariasis
Debris Disks: Probing Planet Formation
Debris disks are the dust disks found around ~20% of nearby main sequence
stars in far-IR surveys. They can be considered as descendants of
protoplanetary disks or components of planetary systems, providing valuable
information on circumstellar disk evolution and the outcome of planet
formation. The debris disk population can be explained by the steady
collisional erosion of planetesimal belts; population models constrain where
(10-100au) and in what quantity (>1Mearth) planetesimals (>10km in size)
typically form in protoplanetary disks. Gas is now seen long into the debris
disk phase. Some of this is secondary implying planetesimals have a Solar
System comet-like composition, but some systems may retain primordial gas.
Ongoing planet formation processes are invoked for some debris disks, such as
the continued growth of dwarf planets in an unstirred disk, or the growth of
terrestrial planets through giant impacts. Planets imprint structure on debris
disks in many ways; images of gaps, clumps, warps, eccentricities and other
disk asymmetries, are readily explained by planets at >>5au. Hot dust in the
region planets are commonly found (<5au) is seen for a growing number of stars.
This dust usually originates in an outer belt (e.g., from exocomets), although
an asteroid belt or recent collision is sometimes inferred.Comment: Invited review, accepted for publication in the 'Handbook of
Exoplanets', eds. H.J. Deeg and J.A. Belmonte, Springer (2018
Recommended from our members
Automated Fabrication ofCeramic Components from Tape-Cast Ceramic
This paper describes a machine and process for automated fabrication of functional 3-D
laminated engineering components, ceramics in the present example. A laser cuts successive layers
of a part derived from a CAD model description out of unfired tape-cast ceramic sheets
vacuum-clamped to an x-y sled. A material-handling robot uses a selective-area gripper to extract
only the desired part outlines from the surrounding waste material, then stacks the slices to build the
part. This system design enables rapid manufacture of functional engineering components with
arbitrarily complex internal and external geometries from virtually any material available in sheet
form.Mechanical Engineerin
The molecular basis of socially mediated phenotypic plasticity in a eusocial paper wasp
Phenotypic plasticity, the ability to produce multiple phenotypes from a single genotype, represents an excellent model with which to examine the relationship between gene expression and phenotypes. Analyses of the molecular foundations of phenotypic plasticity are challenging, however, especially in the case of complex social phenotypes. Here we apply a machine learning approach to tackle this challenge by analyzing individual-level gene expression profiles of Polistes dominula paper wasps following the loss of a queen. We find that caste-associated gene expression profiles respond strongly to queen loss, and that this change is partly explained by attributes such as age but occurs even in individuals that appear phenotypically unaffected. These results demonstrate that large changes in gene expression may occur in the absence of outwardly detectable phenotypic changes, resulting here in a socially mediated de-differentiation of individuals at the transcriptomic level but not at the levels of ovarian development or behavior
ALMA observations of the narrow HR 4796A debris ring
The young A0V star HR 4796A is host to a bright and narrow ring of dust, thought to originate in collisions between planetesimals within a belt analogous to the Solar system’s Edgeworth–Kuiper belt. Here we present high spatial resolution 880 μm continuum images from the Atacama Large Millimeter Array. The 80 au radius dust ring is resolved radially with a characteristic width of 10 au, consistent with the narrow profile seen in scattered light. Our modelling consistently finds that the disc is also vertically resolved with a similar extent. However, this extent is less than the beam size, and a disc that is dynamically very cold (i.e. vertically thin) provides a better theoretical explanation for the narrow scattered light profile, so we remain cautious about this conclusion. We do not detect 12CO J=3–2 emission, concluding that unless the disc is dynamically cold the CO+CO2 ice content of the planetesimals is of order a few per cent or less. We consider the range of semi-major axes and masses of an interior planet supposed to cause the ring’s eccentricity, finding that such a planet should be more massive than Neptune and orbit beyond 40 au. Independent of our ALMA observations, we note a conflict between mid-IR pericentre-glow and scattered light imaging interpretations, concluding that models where the spatial dust density and grain size vary around the ring should be explored
- …