411 research outputs found

    New sub-millimeter limits on dust in the 55 Cancri planetary system

    Get PDF
    We present new, high-sensitivity sub-millimeter observations towards 55 Cancri, a nearby G8 star with one, or possibly two, known planetary companion(s). Our 850 μ\mum map, obtained with the SCUBA instrument on the James Clerk Maxwell Telescope, shows three peaks of emission at the 2.5 mJy level in the vicinity of the star's position. However, the observed peaks are 25\arcsec--40\arcsec away from the star and a deep RR-band optical image reveals faint point sources that coincide with two of the sub-millimeter peaks. Thus, we do not find evidence for dust emission spatially associated with 55 Cancri. The excess 60 μ\mum emission detected with ISO may originate from one or more of the 850 μ\mum peaks that we attribute to background sources. Our new results, together with the HST/NICMOS coronographic images in the near-infrared, place stringent limits on the amount of dust in this planetary system, and argue against the existence of a detectable circumstellar dust disk around 55 Cnc.Comment: 11 pages, 2 PostScript figures, to appear in The Astrophysical Journal Letter

    An ALMA Survey of M-dwarfs in the Beta Pictoris Moving Group with Two New Debris Disc Detections

    Full text link
    Previous surveys in the far-infrared have found very few, if any, M-dwarf debris discs among their samples. It has been questioned whether M-dwarf discs are simply less common than earlier types, or whether the low detection rate derives from the wavelengths and sensitivities available to those studies. The highly sensitive, long wavelength Atacama Large Millimetre/submillimetre Array can shed light on the problem. This paper presents a survey of M-dwarf stars in the young and nearby Beta Pictoris Moving Group with ALMA at Band 7 (880\,μ\mum). From the observational sample we detect two new sub-mm excesses that likely constitute unresolved debris discs around GJ\,2006\,A and AT\,Mic\,A and model distributions of the disc fractional luminosities and temperatures. From the science sample of 36 M-dwarfs including AU\,Mic we find a disc detection rate of 4/36 or 11.1−3.3+7.4^{+7.4}_{-3.3}\% that rises to 23.1−5.5+8.3^{+8.3}_{-5.5}\% when adjusted for completeness. We conclude that this detection rate is consistent with the detection rate of discs around G and K type stars and that the disc properties are also likely consistent with earlier type stars. We additionally conclude that M-dwarf stars are not less likely to host debris discs, but instead their detection requires longer wavelength and higher sensitivity observations than have previously been employed.Comment: Accepted to MNRA

    The Carnegie Supernova Project: The Low-Redshift Survey

    Full text link
    Supernovae are essential to understanding the chemical evolution of the Universe. Type Ia supernovae also provide the most powerful observational tool currently available for studying the expansion history of the Universe and the nature of dark energy. Our basic knowledge of supernovae comes from the study of their photometric and spectroscopic properties. However, the presently available data sets of optical and near-infrared light curves of supernovae are rather small and/or heterogeneous, and employ photometric systems that are poorly characterized. Similarly, there are relatively few supernovae whose spectral evolution has been well sampled, both in wavelength and phase, with precise spectrophotometric observations. The low-redshift portion of the Carnegie Supernova Project (CSP) seeks to remedy this situation by providing photometry and spectrophotometry of a large sample of supernovae taken on telescope/filter/detector systems that are well understood and well characterized. During a five-year program which began in September 2004, we expect to obtain high-precision u'g'r'i'BVYJHKs light curves and optical spectrophotometry for about 250 supernovae of all types. In this paper we provide a detailed description of the CSP survey observing and data reduction methodology. In addition, we present preliminary photometry and spectra obtained for a few representative supernovae during the first observing campaign.Comment: 45 pages, 13 figures, 3 tables, accepted by PAS

    A novel diagnostic gene region for distinguishing between two pest fruit flies: Bactrocera tryoni (Froggatt) and Bactrocera neohumeralis (Hardy) (Diptera: Tephritidae)

    Get PDF
    Bactrocera tryoni and Bactrocera neohumeralis are morphologically similar sibling pest fruit fly species that possess different biological attributes, geographic distributions, and host ranges. The need to differentiate between the two species is critical for accurate pest status assessment, management, biosecurity, and maintenance of reference colonies. While morphologically similar, adults may be separated based on subtle characters; however, some characters exhibit intraspecific variability, creating overlap between the two species. Additionally, there is currently no single molecular marker or rapid diagnostic assay that can reliably distinguish between B. neohumeralis and B. tryoni; therefore, ambiguous samples remain undiagnosed. Here we report the first molecular marker that can consistently distinguish between B. tryoni and B. neohumeralis. Our diagnostic region consists of two adjacent single nucleotide polymorphisms (SNPs) within the pangolin (pan) gene region. We confirmed the genotypes of each species are consistent across their distributional range, then developed a tetra-primer amplification refractory mutation system (ARMS) PCR assay for rapid diagnosis of the species. The assay utilizes four primers in multiplex, with two outer universal primers, and two internal primers: one designed to target two adjacent SNPs (AA) present in B. tryoni and the other targeting adjacent SNPs present in B. neohumeralis (GG). The assay accurately discriminates between the two species, but their SNP genotypes are shared with other nontarget tephritid fruit fly species. Therefore, this assay is most suited to adult diagnostics where species confirmation is necessary in determining ambiguous surveillance trap catches; maintaining pure colony lines; and in Sterile Insect Technique management responses

    Hectospec, the MMT's 300 Optical Fiber-Fed Spectrograph

    Full text link
    The Hectospec is a 300 optical fiber fed spectrograph commissioned at the MMT in the spring of 2004. A pair of high-speed six-axis robots move the 300 fiber buttons between observing configurations within ~300 s and to an accuracy ~25 microns. The optical fibers run for 26 m between the MMT's focal surface and the bench spectrograph operating at R~1000-2000. Another high dispersion bench spectrograph offering R~5,000, Hectochelle, is also available. The system throughput, including all losses in the telescope optics, fibers, and spectrograph peaks at ~10% at the grating blaze in 1" FWHM seeing. Correcting for aperture losses at the 1.5" diameter fiber entrance aperture, the system throughput peaks at ∼\sim17%. Hectospec has proven to be a workhorse instrument at the MMT. Hectospec and Hectochelle together were scheduled for 1/3 of the available nights since its commissioning. Hectospec has returned \~60,000 reduced spectra for 16 scientific programs during its first year of operation.Comment: 68 pages, 28 figures, to appear in December 2005 PAS

    Design of the Global Health chemical diversity library v2 for screening against infectious diseases

    Get PDF
    There is a need for novel chemical matter for phenotypic and target-based screens to find starting points for drug discovery programmes in neglected infectious diseases and non-hormonal contraceptives that disproportionately affect Low- and Middle-Income Countries (LMICs). In some disease areas, multiple screens of corporate and other libraries have been carried out, giving rise to some valuable starting points and leading to preclinical candidates. While in other disease areas, little screening has been carried out. Much screening against pathogens has been conducted phenotypically as there are few robustly validated protein targets. However, many of the active compound series identified share the same molecular targets. To address the need for new chemical material, in this article, we describe the design of a new library designed for screening in drug discovery programmes for neglected infectious diseases. The compounds have been selected from the Enamine REAL (REadily AccessibLe) library, a virtual library which contains approximately 4.5 billion molecules. The molecules theoretically can be synthesized quickly using commercially available intermediates and building blocks. The vast majority of these have not been prepared before, so this is a source of novel compounds. In this paper, we describe the design of a diverse library of 30,000 compounds from this collection (graphical abstract). The new library will be made available to laboratories working in neglected infectious diseases, subject to a review process

    Design of the Global Health chemical diversity library v2 for screening against infectious diseases

    Get PDF
    There is a need for novel chemical matter for phenotypic and target-based screens to find starting points for drug discovery programmes in neglected infectious diseases and non-hormonal contraceptives that disproportionately affect Low- and Middle-Income Countries (LMICs). In some disease areas, multiple screens of corporate and other libraries have been carried out, giving rise to some valuable starting points and leading to preclinical candidates. While in other disease areas, little screening has been carried out. Much screening against pathogens has been conducted phenotypically as there are few robustly validated protein targets. However, many of the active compound series identified share the same molecular targets. To address the need for new chemical material, in this article, we describe the design of a new library designed for screening in drug discovery programmes for neglected infectious diseases. The compounds have been selected from the Enamine REAL (REadily AccessibLe) library, a virtual library which contains approximately 4.5 billion molecules. The molecules theoretically can be synthesized quickly using commercially available intermediates and building blocks. The vast majority of these have not been prepared before, so this is a source of novel compounds. In this paper, we describe the design of a diverse library of 30,000 compounds from this collection (graphical abstract). The new library will be made available to laboratories working in neglected infectious diseases, subject to a review process

    The clumpy structure of ϵ\epsilon Eridani's debris disc revisited by ALMA

    Full text link
    ϵ\epsilon Eridani is the closest star to our Sun known to host a debris disc. Prior observations in the (sub-)millimetre regime have potentially detected clumpy structure in the disc and attributed this to interactions with an (as yet) undetected planet. However, the prior observations were unable to distinguish between structure in the disc and background confusion. Here we present the first ALMA image of the entire disc, which has a resolution of 1.6"×\times1.2". We clearly detect the star, the main belt and two point sources. The resolution and sensitivity of this data allow us to clearly distinguish background galaxies (that show up as point sources) from the disc emission. We show that the two point sources are consistent with background galaxies. After taking account of these, we find that resolved residuals are still present in the main belt, including two clumps with a >3σ>3\sigma significance -- one to the east of the star and the other to the northwest. We perform nn-body simulations to demonstrate that a migrating planet can form structures similar to those observed by trapping planetesimals in resonances. We find that the observed features can be reproduced by a migrating planet trapping planetesimals in the 2:1 mean motion resonance and the symmetry of the most prominent clumps means that the planet should have a position angle of either ∼10∘{\sim10^\circ} or ∼190∘{\sim190^\circ}. Observations over multiple epochs are necessary to test whether the observed features rotate around the star.Comment: 16 pages, 10 figures, accepted for publication in MNRA
    • …
    corecore