321 research outputs found
Self-organized two-dimensional onions
This is the publisher's version, also available electronically from http://scitation.aip.org/content/aip/journal/apl/94/11/10.1063/1.3101373.Spontaneously self-assembled onion-type nanostructures based on block copolymers as templating materials are reported. Polystyrene-poly(ethylene oxide) diblock copolymer containing CoFe2O4 and Pb1.1(Zr0.53Ti0.47)O3 precursors segregated to the two microdomains forms well-ordered templated lamellar structures. Onion-type nanostructures have been induced by room temperature solvent annealing for 64 h in a magnetic field of 0.8 T oriented perpendicularly to the plane of film. The recorded images suggest that the Lorentz force acting on charges in the paraelectric precursor induces a circular component of the diffusion flux that leads to the onion formation. This templating process opens a route for nanometer-scale patterning of magnetic toroids
A review on disorder-driven metal-insulator transition in crystalline vacancy-rich GeSbTe phase-change materials
Metal-insulator transition (MIT) is one of the most essential topics in condensed matter physics and materials science. The accompanied drastic change in electrical resistance can be exploited in electronic devices, such as data storage and memory technology. It is generally accepted that the underlying mechanism of most MITs is an interplay of electron correlation effects (Mott type) and disorder effects (Anderson type), and to disentangle the two effects is difficult. Recent progress on the crystalline Ge1Sb2Te4 (GST) compound provides compelling evidence for a disorder-driven MIT. In this work, we discuss the presence of strong disorder in GST, and elucidate its effects on electron localization and transport properties. We also show how the degree of disorder in GST can be reduced via thermal annealing, triggering a disorder-driven metal-insulator transition. The resistance switching by disorder tuning in crystalline GST may enable novel multilevel data storage devices
Strain development and damage accumulation under ion irradiation of polycrystalline Ge-Sb-Te alloys
The atomic displacement produced by ion irradiation with 150 keV Ar+ ions has been studied in Ge1Sb2Te4 and Ge2Sb2Te5. Electrical, optical and structural measurements have been employed to characterize the induced electrical and structural modifications. At low temperature the amorphization threshold, evaluated by in situ reflectivity measurements, is independent of the composition and the crystalline structure, and it is equal to 1 x 1013 cm-2. At room temperature, at which dynamic annealing can take place, Ge2Sb2Te5 and Ge1Sb2Te4 in the rocksalt phase exhibit the same amorphization threshold (3 x 1013 cm-2). In the trigonal structure, instead, a higher fluence is required to amorphize the Ge1Sb2Te4, compared to Ge2Sb2Te5. The observed differences between the two compositions can be explained considering the effect of dynamic annealing during ion irradiation of the trigonal phase, which is characterized by the presence of van der Waals gaps. These may act as a preferential sink for the diffusion of the displaced atoms and the filling of these gaps tunes the electronic and structural properties. Filling of about 30% of the gaps produces an electronic transition from metallic to insulating behavior. By further increasing the disorder and filling more than 70% of the gaps the films convert into the rocksalt phase
Picosecond electric-field-induced threshold switching in phase-change materials
Many chalcogenide glasses undergo a breakdown in electronic resistance above
a critical field strength. Known as threshold switching, this mechanism enables
field-induced crystallization in emerging phase-change memory. Purely
electronic as well as crystal nucleation assisted models have been employed to
explain the electronic breakdown. Here, picosecond electric pulses are used to
excite amorphous AgInSbTe. Field-dependent reversible
changes in conductivity and pulse-driven crystallization are observed. The
present results show that threshold switching can take place within the
electric pulse on sub-picosecond time-scales - faster than crystals can
nucleate. This supports purely electronic models of threshold switching and
reveals potential applications as an ultrafast electronic switch.Comment: 6 pages manuscript with 3 figures and 8 pages supplementary materia
Materials Screening for Disorder-Controlled Chalcogenide Crystals for Phase-Change Memory Applications
Tailoring the degree of disorder in chalcogenide phase-change materials (PCMs) plays an essential role in nonvolatile memory devices and neuro-inspired computing. Upon rapid crystallization from the amorphous phase, the flagship Ge–Sb–Te PCMs form metastable rocksalt-like structures with an unconventionally high concentration of vacancies, which results in disordered crystals exhibiting Anderson-insulating transport behavior. Here, ab initio simulations and transport experiments are combined to extend these concepts to the parent compound of Ge–Sb–Te alloys, viz., binary Sb2Te3, in the metastable rocksalt-type modification. Then a systematic computational screening over a wide range of homologous, binary and ternary chalcogenides, elucidating the critical factors that affect the stability of the rocksalt structure is carried out. The findings vastly expand the family of disorder-controlled main-group chalcogenides toward many more compositions with a tunable bandgap size for demanding phase-change applications, as well as a varying strength of spin–orbit interaction for the exploration of potential topological Anderson insulators
Disorder-Driven Pretransitional Tweed in Martensitic Transformations
Defying the conventional wisdom regarding first--order transitions, {\it
solid--solid displacive transformations} are often accompanied by pronounced
pretransitional phenomena. Generally, these phenomena are indicative of some
mesoscopic lattice deformation that ``anticipates'' the upcoming phase
transition. Among these precursive effects is the observation of the so-called
``tweed'' pattern in transmission electron microscopy in a wide variety of
materials. We have investigated the tweed deformation in a two dimensional
model system, and found that it arises because the compositional disorder
intrinsic to any alloy conspires with the natural geometric constraints of the
lattice to produce a frustrated, glassy phase. The predicted phase diagram and
glassy behavior have been verified by numerical simulations, and diffraction
patterns of simulated systems are found to compare well with experimental data.
Analytically comparing to alternative models of strain-disorder coupling, we
show that the present model best accounts for experimental observations.Comment: 43 pages in TeX, plus figures. Most figures supplied separately in
uuencoded format. Three other figures available via anonymous ftp
- …