37 research outputs found
Engineering key components in a synthetic eukaryotic signal transduction pathway
Signal transduction underlies how living organisms detect and respond to stimuli. A goal of synthetic biology is to rewire natural signal transduction systems. Bacteria, yeast, and plants sense environmental aspects through conserved histidine kinase (HK) signal transduction systems. HK protein components are typically comprised of multiple, relatively modular, and conserved domains. Phosphate transfer between these components may exhibit considerable cross talk between the otherwise apparently linear pathways, thereby establishing networks that integrate multiple signals. We show that sequence conservation and cross talk can extend across kingdoms and can be exploited to produce a synthetic plant signal transduction system. In response to HK cross talk, heterologously expressed bacterial response regulators, PhoB and OmpR, translocate to the nucleus on HK activation. Using this discovery, combined with modification of PhoB (PhoB-VP64), we produced a key component of a eukaryotic synthetic signal transduction pathway. In response to exogenous cytokinin, PhoB-VP64 translocates to the nucleus, binds a synthetic PlantPho promoter, and activates gene expression. These results show that conserved-signaling components can be used across kingdoms and adapted to produce synthetic eukaryotic signal transduction pathways
Elucidating Carotenoid Biosynthetic Enzyme Localization and Interactions Using Fluorescent Microscopy
Carotenoids are essential for survival of all plants, where these colorful pigments and derivatives are biosynthesized, as well as for humans and other species that obtain plant-derived carotenoids in their diets and rely upon them for vitamin biosynthesis or antioxidant actions. The plant carotenoid biosynthetic pathway consists of nuclear encoded enzymes that are imported into chloroplasts and other plastids. The pathway structural genes are known and have been targeted for metabolic engineering to improve carotenoid profiles or content. However, results are not always as expected because there remain fundamental gaps in understanding how the pathway is physically organized. Many of the enzymes have been found in high molecular weight complexes which are poorly described. Elucidation of enzyme localization as well as enzyme interactions in vivo are needed for advancing the carotenoid field and facilitating our understanding of the three-dimensional organization of this important pathway. Fluorescent protein fusions with carotenoid enzymes can provide in vivo information when these fusions are introduced and transiently expressed in plant cells. Current advances in fluorescent microscopy, especially confocal microscopy, provide the resolution needed to localize fluorescently tagged carotenoid enzymes within suborganellar locations of plastids. Interactions between carotenoid biosynthetic enzymes can be determined using bimolecular fluorescence complementation (BiFC), a method whereby genes of interest are fused with sequences encoding nonfluorescent N- and C-terminal halves of YFP (yellow fluorescent protein), and then introduced into plant protoplasts to allow expression and visualization by fluorescence microscopy. The YFP fluorescence is restored only if the N and C-terminal regions are brought together by interacting fusion partners. Here we describe the methodology, with extensive tips and notes, for determining in vivo carotenoid enzyme localization and enzyme interactions by transient expression of enzyme-fluorescent protein fusions