3 research outputs found
Characterization of the Interfaces in LiFePO4/PEO-LiTFSI Composite Cathodes and to the Adjacent Layers
Interface resistances between the different components of battery cells limit their fast charge and discharge capability which is required for different applications such as electromobility. To decrease interface resistances, it is necessary to understand which individual interface they arise at and how they can be controlled. Electrochemical impedance spectroscopy is a well-established technique for the distinction of different contributions to the internal cell resistance and allows the characterization of interface resistances. Especially the use of suitable cell setups allows one to attribute the measured resistances to specific interfaces. In this contribution, we investigate the impedance of dry polymer full cells containing a lithium iron phosphate/ poly(ethylene oxide)-lithium bis(trifluoromethanesulfonyl)imide composite cathode, a solid polymer electrolyte separator and a lithium-metal anode. Based on the results on different cell setups, we are able to reliably determine the planar resistances between the components as well as the charge transfer resistance inside the composite cathode. For unoptimized systems, we find high planar resistances, which can be significantly reduced by coating and processing strategies. For the charge transfer resistance, we find a dependence on the SOC as well as on the charging direction. Possible mechanisms for the evolution of interface resistances are discussed also based on chemical analysis performed by photoelectron spectroscopy (XPS)
Elektrochemische Charakterisierung der Grenzflächen von Kompositkathoden im System LiFePO4/ Polymerelektrolyt
Grenzflächenwiderstände zwischen den verschiedenen Komponenten von Batteriezellen begrenzen deren Schnelllade- und Entladefähigkeit. Diese Fähigkeit wird jedoch für verschiedene Anwendungen wie die Elektromobilität benötigt. Um Grenzflächenwiderstände zu verringern, ist es notwendig zu verstehen, an welcher Grenzfläche sie entstehen.
Im Rahmen dieser Arbeit werden Festkörperbatterien auf Polymerbasis charakterisiert, welche eine Lithiumeisenphosphat (LFP)/ PEO-LiTFSI-Kompositkathode, einen Polymerelektrolyt-separator und eine Lithium-Metall-Anode enthalten.
Die elektrochemische Impedanzspektroskopie (EIS) ist eine etablierte Methode zur Unterscheidung verschiedener Beiträge des Zellwiderstandes und ermöglicht somit die Charakterisierung der Grenzflächenwiderstände. Zur Charakterisierung des, im Rahmen dieser Arbeit verwendeten, komplexen Polymerelektrolytsystems, ist die Verwendung geeigneter Modellsysteme notwendig um einzelne Widerstände einer Zelle mittels Impedanzspektroskopie zuzuordnen. Mittels Photoelektronenspektroskopie (XPS) werden im Rahmen dieser Arbeit die Reaktivität und die Ausbildung von Grenzflächen zwischen den Materialien der Kompositkathode charakterisiert.
Die charakterisierten Kathoden wurden mittels einer lösungsmittelfreien Prozessierung hergestellt. Der Einfluss dieser Prozessierung auf die verschiedenen Grenzflächen wird untersucht. Die Widerstände zu den, der Kathode benachbarten Schichten werden im Rahmen dieser Arbeit minimiert. Für den Widerstand zwischen Kathodenaktivmaterial LFP und Polymerelektrolyt (charge transfer Widerstand) wird eine Abhängigkeit vom Ladezustand und von der Laderichtung ermittelt. Dieses Verhalten trägt zum Verständnis der Lade-Entladekinetik des LFP bei
Elektrochemische Charakterisierung der Grenzflächen von Kompositkathoden im System LiFePO4/ Polymerelektrolyt
Grenzflächenwiderstände zwischen den verschiedenen Komponenten von Batteriezellen begrenzen deren Schnelllade- und Entladefähigkeit. Diese Fähigkeit wird jedoch für verschiedene Anwendungen wie die Elektromobilität benötigt. Um Grenzflächenwiderstände zu verringern, ist es notwendig zu verstehen, an welcher Grenzfläche sie entstehen.
Im Rahmen dieser Arbeit werden Festkörperbatterien auf Polymerbasis charakterisiert, welche eine Lithiumeisenphosphat (LFP)/ PEO-LiTFSI-Kompositkathode, einen Polymerelektrolyt-separator und eine Lithium-Metall-Anode enthalten.
Die elektrochemische Impedanzspektroskopie (EIS) ist eine etablierte Methode zur Unterscheidung verschiedener Beiträge des Zellwiderstandes und ermöglicht somit die Charakterisierung der Grenzflächenwiderstände. Zur Charakterisierung des, im Rahmen dieser Arbeit verwendeten, komplexen Polymerelektrolytsystems, ist die Verwendung geeigneter Modellsysteme notwendig um einzelne Widerstände einer Zelle mittels Impedanzspektroskopie zuzuordnen. Mittels Photoelektronenspektroskopie (XPS) werden im Rahmen dieser Arbeit die Reaktivität und die Ausbildung von Grenzflächen zwischen den Materialien der Kompositkathode charakterisiert.
Die charakterisierten Kathoden wurden mittels einer lösungsmittelfreien Prozessierung hergestellt. Der Einfluss dieser Prozessierung auf die verschiedenen Grenzflächen wird untersucht. Die Widerstände zu den, der Kathode benachbarten Schichten werden im Rahmen dieser Arbeit minimiert. Für den Widerstand zwischen Kathodenaktivmaterial LFP und Polymerelektrolyt (charge transfer Widerstand) wird eine Abhängigkeit vom Ladezustand und von der Laderichtung ermittelt. Dieses Verhalten trägt zum Verständnis der Lade-Entladekinetik des LFP bei