1,033 research outputs found

    Mid-infrared plasmons in scaled graphene nanostructures

    Full text link
    Plasmonics takes advantage of the collective response of electrons to electromagnetic waves, enabling dramatic scaling of optical devices beyond the diffraction limit. Here, we demonstrate the mid-infrared (4 to 15 microns) plasmons in deeply scaled graphene nanostructures down to 50 nm, more than 100 times smaller than the on-resonance light wavelength in free space. We reveal, for the first time, the crucial damping channels of graphene plasmons via its intrinsic optical phonons and scattering from the edges. A plasmon lifetime of 20 femto-seconds and smaller is observed, when damping through the emission of an optical phonon is allowed. Furthermore, the surface polar phonons in SiO2 substrate underneath the graphene nanostructures lead to a significantly modified plasmon dispersion and damping, in contrast to a non-polar diamond-like-carbon (DLC) substrate. Much reduced damping is realized when the plasmon resonance frequencies are close to the polar phonon frequencies. Our study paves the way for applications of graphene in plasmonic waveguides, modulators and detectors in an unprecedentedly broad wavelength range from sub-terahertz to mid-infrared.Comment: submitte

    Graphene plasmonics

    Full text link
    Two rich and vibrant fields of investigation, graphene physics and plasmonics, strongly overlap. Not only does graphene possess intrinsic plasmons that are tunable and adjustable, but a combination of graphene with noble-metal nanostructures promises a variety of exciting applications for conventional plasmonics. The versatility of graphene means that graphene-based plasmonics may enable the manufacture of novel optical devices working in different frequency ranges, from terahertz to the visible, with extremely high speed, low driving voltage, low power consumption and compact sizes. Here we review the field emerging at the intersection of graphene physics and plasmonics.Comment: Review article; 12 pages, 6 figures, 99 references (final version available only at publisher's web site

    Risk and clinical-outcome indicators of delirium in an emergency department intermediate care unit (EDIMCU) : an observational prospective study

    Get PDF
    We are thankful to the staff at the EDIMCU of Hospital de Braga.Background Identification of delirium in emergency departments (ED) is often underestimated; within EDs, studies on delirium assessment and relation with patient outcome in Intermediate Care Units (IMCU) appear missing in European hospital settings. Here we aimed to determine delirium prevalence in an EDIMCU (Hospital de Braga, Braga, Portugal) and assessed routine biochemical parameters that might be delirium indicators. Methods The study was prospective and observational. Sedation level was assessed via the Richmond Agitation-Sedation Scale and delirium status by the Confusion Assessment Method for the ICU. Information collected included age and gender, admission type, Charlson Comorbidity Index combined condition score (Charlson score), systemic inflammatory response syndrome criteria (SIRS), biochemical parameters (blood concentration of urea nitrogen, creatinine, hemoglobin, sodium and potassium, arterial blood gases, and other parameters as needed depending on clinical diagnosis) and EDIMCU length of stay (LOS). Statistical analyses were performed as appropriate to determine if baseline features differed between the ‘Delirium’ and ‘No Delirium’ groups. Multivariate logistic regression was performed to assess the effect of delirium on the 1-month outcome. Results Inclusion and exclusion criteria were met in 283 patients; 238 were evaluated at 1-month for outcome follow-up after EDIMCU discharge (“good” recovery without complications requiring hospitalization or institutionalization; “poor” institutionalization in permanent care-units/assisted-living or death). Delirium was diagnosed in 20.1% patients and was significantly associated with longer EDIMCU LOS. At admission, Delirium patients were significantly older and had significantly higher blood urea, creatinine and osmolarity levels and significantly lower hemoglobin levels, when compared with No Delirium patients. Delirium was an independent predictor of increased EDIMCU LOS (odds ratio 3.65, 95% CI 1.97-6.75) and poor outcome at 1-month after discharge (odds ratio 3.51, CI 1.84-6.70), adjusted for age, gender, admission type, presence of SIRS criteria, Charlson score and osmolarity at admission. Conclusions In an EDIMCU setting, delirium was associated with longer LOS and poor outcome at1-month post-discharge. Altogether, findings support the need for delirium screening and management in emergency settings.NCS is supported by the post-doctoral fellowship UMINHO/BPD/013/2011 by the European Commission (FP7) “SwitchBox” Project (Contract HEALTH-F2-2010-259772)

    Hospital mortality is associated with ICU admission time

    Get PDF
    Previous studies have shown that patients admitted to the intensive care unit (ICU) after "office hours" are more likely to die. However these results have been challenged by numerous other studies. We therefore analysed this possible relationship between ICU admission time and in-hospital mortality in The Netherlands. This article relates time of ICU admission to hospital mortality for all patients who were included in the Dutch national ICU registry (National Intensive Care Evaluation, NICE) from 2002 to 2008. We defined office hours as 08:00-22:00 hours during weekdays and 09:00-18:00 hours during weekend days. The weekend was defined as from Saturday 00:00 hours until Sunday 24:00 hours. We corrected hospital mortality for illness severity at admission using Acute Physiology and Chronic Health Evaluation II (APACHE II) score, reason for admission, admission type, age and gender. A total of 149,894 patients were included in this analysis. The relative risk (RR) for mortality outside office hours was 1.059 (1.031-1.088). Mortality varied with time but was consistently higher than expected during "off hours" and lower during office hours. There was no significant difference in mortality between different weekdays of Monday to Thursday, but mortality increased slightly on Friday (RR 1.046; 1.001-1.092). During the weekend the RR was 1.103 (1.071-1.136) in comparison with the rest of the week. Hospital mortality in The Netherlands appears to be increased outside office hours and during the weekends, even when corrected for illness severity at admission. However, incomplete adjustment for certain confounders might still play an important role. Further research is needed to fully explain this differenc

    Search for the standard model Higgs boson at LEP

    Get PDF

    A predictive model for the early identification of patients at risk for a prolonged intensive care unit length of stay

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients with a prolonged intensive care unit (ICU) length of stay account for a disproportionate amount of resource use. Early identification of patients at risk for a prolonged length of stay can lead to quality enhancements that reduce ICU stay. This study developed and validated a model that identifies patients at risk for a prolonged ICU stay.</p> <p>Methods</p> <p>We performed a retrospective cohort study of 343,555 admissions to 83 ICUs in 31 U.S. hospitals from 2002-2007. We examined the distribution of ICU length of stay to identify a threshold where clinicians might be concerned about a prolonged stay; this resulted in choosing a 5-day cut-point. From patients remaining in the ICU on day 5 we developed a multivariable regression model that predicted remaining ICU stay. Predictor variables included information gathered at admission, day 1, and ICU day 5. Data from 12,640 admissions during 2002-2005 were used to develop the model, and the remaining 12,904 admissions to internally validate the model. Finally, we used data on 11,903 admissions during 2006-2007 to externally validate the model.</p> <p>Results</p> <p>The variables that had the greatest impact on remaining ICU length of stay were those measured on day 5, not at admission or during day 1. Mechanical ventilation, PaO<sub>2</sub>: FiO<sub>2 </sub>ratio, other physiologic components, and sedation on day 5 accounted for 81.6% of the variation in predicted remaining ICU stay. In the external validation set observed ICU stay was 11.99 days and predicted total ICU stay (5 days + day 5 predicted remaining stay) was 11.62 days, a difference of 8.7 hours. For the same patients, the difference between mean observed and mean predicted ICU stay using the APACHE day 1 model was 149.3 hours. The new model's r<sup>2 </sup>was 20.2% across individuals and 44.3% across units.</p> <p>Conclusions</p> <p>A model that uses patient data from ICU days 1 and 5 accurately predicts a prolonged ICU stay. These predictions are more accurate than those based on ICU day 1 data alone. The model can be used to benchmark ICU performance and to alert physicians to explore care alternatives aimed at reducing ICU stay.</p
    corecore