130 research outputs found

    Hawking Radiation of a Quantum Black Hole in an Inflationary Universe

    Full text link
    The quantum stress-energy tensor of a massless scalar field propagating in the two-dimensional Vaidya-de Sitter metric, which describes a classical model spacetime for a dynamical evaporating black hole in an inflationary universe, is analyzed. We present a possible way to obtain the Hawking radiation terms for the model with arbitrary functions of mass. It is used to see how the expansion of universe will affect the dynamical process of black hole evaporation. The results show that the cosmological inflation has an inclination to depress the black hole evaporation. However, if the cosmological constant is sufficiently large then the back-reaction effect has the inclination to increase the black hole evaporation. We also present a simple method to show that it will always produce a divergent flux of outgoing radiation along the Cauchy horizon where the curvature is a finite value. This means that the Hawking radiation will be very large in there and shall modify the classical spacetime drastically. Therefore the black hole evaporation cannot be discussed self-consistently on the classical Vaidya-type spacetime. Our method can also be applied to analyze the quantum stress-energy tensor in the more general Vaidya-type spacetimes.Comment: Proper boundary will lead to anti-evaporation of schwarzschild-de Sitter black holes, as corrected in Class. Quantum Grav. 11 (1994) 28

    Finite-Temperature Cosmological Phase Transition in a Rotating Spacetime

    Full text link
    We use the ζ\zeta-function regularization method to evaluate the finite temperature 1-loop effective potential for ϕ4\phi^4 theory in the Godel spacetime. It is used to study the effects of temperature and curvature coupling on the cosmological phase transition in the rotational spacetime. From our results the critical temperature of symmetry restoration, which is a function of curvature coupling and magnitude of spacetime rotation, can be determined.Comment: Latex 14 page

    Cohesive-zone modelling of the deformation and fracture of spot-welded joints

    Full text link
    The deformation and failure of spot-welded joints have been successfully modelled using a cohesive-zone model for fracture. This has been accomplished by implementing a user-defined, three-dimensional, cohesive-zone element within a commercial finite-element package. The model requires two material parameters for each mode of deformation. Results show that the material parameters from this type of approach are transferable for identical spot welds in different geometries where a single parameter (such as maximum stress) is not. The approach has been demonstrated using a model system consisting of spot-welded joints made from 5754 aluminium sheets. The techniques for determining the cohesive fracture parameters for both nugget fracture and nugget pullout are described in this paper. It has been demonstrated that once the appropriate cohesive parameters for a weld are determined, quantitative predictions can be developed for the strengths, deformations and failure mechanisms of different geometries with nominally identical welds.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73187/1/j.1460-2695.2005.00919.x.pd

    Holographic Description of Glueball and Baryon in Noncommutative Dipole Gauge Theory

    Full text link
    We study the glueball spectrum in the supersymmetric and non-supersymmetric 4D non-commutative dipole gauge theory from the holographic description. We adopt the semiclassical WKB approximation to solve the dilaton and antisymmetric tensor field equations on the dual supergravity backgrounds to find the analytic formula of the spectrum of 0++0^{++} and 11^{--} glueballs, respectively. In the supersymmetric theory we see that the dipole length plays the intrinsic scale which reflects the discrete spectrum therein. In the non-supersymmetric theory, the temperature (or the radius of compactification) in there will now play the intrinsic scale and we see that the dipole has an effect to produce attractive force between the gluons within the glueball. We also study the confining force between the quarks within the baryon via strings that hang into the dipole deformed AdS geometry and see that the dipole could also produce an attractive force between the quarks. In particular, we find that the baryon has two phases in which a big baryon is dual to the static string while a small baryon is described by a moving dual string .Comment: Latex 18 page

    Developing 21st century accreditation standards for teaching hospitals: the Taiwan experience

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study is to establish teaching hospital accreditation standards anew with the hope that Taiwan's teaching hospitals can live up to the expectations of our society and ensure quality teaching.</p> <p>Methods</p> <p>The development process lasted two years, 2005-2006, and was separated into three stages. The first stage centered on leadership meetings and consensus building, the second on drafting the new standards with expert focus groups, and the third on a pilot study and subsequent revision.</p> <p>Results</p> <p>Our new teaching hospital accreditation standards have six categories and 95 standards as follows: educational resources (20 items), teaching and training plans and outcomes (42 items), research and results (9 items), development of clinical faculty and continuing education (8 items), academic exchanges and community education (8 items), and administration (8 items).</p> <p>Conclusions</p> <p>The new standards have proven feasible and posed reasonable challenges in the pilot study. We hope the new standards will strengthen teaching and research, and improve the quality of hospital services at the same time.</p

    Quantum Field Effects on Cosmological Phase Transition in Anisotropic Spacetimes

    Full text link
    The one-loop renormalized effective potentials for the massive ϕ4\phi^4 theory on the spatially homogeneous models of Bianchi type I and Kantowski-Sachs type are evaluated. It is used to see how the quantum field affects the cosmological phase transition in the anisotropic spacetimes. For reasons of the mathematical technique it is assumed that the spacetimes are slowly varying or have specially metric forms. We obtain the analytic results and present detailed discussions about the quantum field corrections to the symmetry breaking or symmetry restoration in the model spacetimes.Comment: Latex 17 page

    KK6 from M2 in BLG

    Full text link
    We study the possibility that the Kaluza-Klein monopole (KK6) world-volume action may be obtained from the multiple membranes (M2) action which is described by BLG theory. We first point out that the infinite dimensional Lie 3-algebra based on the Nambu-Poisson structure could not only provide three dimensional manifolds to allow M5 from M2, which was studied by previous authors, but also provide five dimensional manifolds to allow KK6 from M2. We next present a possible way that the U(1) field on KK6 world-volume action could be produced form the gauge potential in BLG theory.Comment: Latex, 15 pages. V3: Add theorem 2 to complete proof. V4: Detail physical interpretations and calculations in section

    Statistical Interparticle Potential between Two Anyons

    Full text link
    The density matrix of a two-anyon system is evaluated and used to investigate the "statistical interparticle potential" following the theory of Uhlenbeck. The main purpose is to see how the statistical potential will depend on the fractional statistical parameter α\alpha. The result shows that the statistical potential for a two-anyon system with α12\alpha\ge {1\over2} is always repulsive. For the system with 0<α<120<\alpha< {1\over2}, the potential is repulsive at short distances and becomes attractive at long distances. It remains only in the boson system (α=0\alpha=0) that the repulsive potential arising from the exclusion principle can disappear and lead to an attractive potential at all distances.Comment: Latex 5 pages, correct typos and figur

    High-Temperature Effective Potential of Noncommutative Scalar Field Theory: Reduction of Degree of Freedom by Noncommutativity

    Full text link
    The renormalization of effective potentials for the noncommutative scalar field theory at high temperature are investigated to the two-loop approximation. The Feynman diagrams in evaluating the effective potential may be classified into two types: the planar diagrams and nonplanar diagrams. The nonplanar diagrams, which depend on the parameter of noncommutativity, do not appear in the one-loop potential. Despite their appearance in the two-loop level, they do not have an inclination to restore the symmetry breaking in the tree level, in contrast to the planar diagrams. This phenomenon is explained as a consequence of the drastic reduction of the degrees of freedom in the nonplanar diagrams when the thermal wavelength is smaller than the noncommutativity scale. Our results show that the nonplanar two-loop contribution to the effective potential can be neglected in comparsion with that from the planar diagrams.Comment: Latex, 17 pages, change the conclusion, improve the Englis

    Giant Magnons under NS-NS and Melvin Fields

    Get PDF
    The giant magnon is a rotating spiky string configuration which has the same dispersion relation between the energy and angular momentum as that of a spin magnon. In this paper we investigate the effects of the NS-NS and Melvin fields on the giant magnon. We first analyze the energy and angular momenta of the two-spin spiky D-string moving on the AdS3×S1AdS_3\times S^1 with the NS-NS field. Due to the infinite boundary of the AdS spacetime the D-string solution will extend to infinity and it appears the divergences. After adding the counter terms we obtain the dispersion relation of the corresponding giant magnon. The result shows that there will appear a prefactor before the angular momentum, in addition to some corrections in the sine function. We also see that the spiky profile of a rotating D-string plays an important role in mapping it to a spin magnon. We next investigate the energy and angular momentum of the one-spin spiky fundamental string moving on the R×S2R \times S^2 with the electric or magnetic Melvin field. The dispersion relation of the corresponding deformed giant magnon is also obtained. We discuss some properties of the correction terms and their relations to the spin chain with deformations.Comment: Latex 20 pages, mention D-string and add reference
    corecore