24 research outputs found

    Description of the intermediate length scale structural motifs in sodium vanado-phosphate glasses by magnetic resonance spectroscopies

    No full text
    For the first time, the local and medium range orders in sodium vanado-phosphate glasses have been investigated by advanced magnetic resonance spectroscopy methods. One- and two-dimensional 31P/51V magic angle spinning nuclear magnetic resonance techniques (31P(51V) REAPDOR and 51V(31P) D-HMQC) have been used to monitor the formation of P-O-V5+ bonds and to provide the first accurate description of the intermediate length scale structural motifs in these glasses. The structural model has been completed by the investigation of the chemical environment of the V4+ ions (produced through the partial reduction of V5+ during the melting stage of the glass preparation) using standard continuous wave and advanced pulsed electron paramagnetic resonance techniques (HYSCORE). Finally, the combination of both sets of data leads to the first complete and precise structural model of the alkali vanado-phosphate glass system

    Properties and Reactivity Patterns of AsP3: An Experimental and Computational Study of Group 15 Elemental Molecules

    No full text
    Facile synthetic access to the isolable, thermally robust AsP3 molecule has allowed for a thorough study of its physical properties and reaction chemistry with a variety of transition-metal and organic fragments. The electronic properties of AsP3 in comparison with P4 are revealed by DFT and atoms in molecules (AIM) approaches and are discussed in relation to the observed electrochemical profiles and the phosphorus NMR properties of the two molecules. An investigation of the nucleus independent chemical shifts revealed that AsP3 retains spherical aromaticity. The thermodynamic properties of AsP3 and P4 are described. The reaction types explored in this study include the thermal decomposition of the AsP3 tetrahedron to its elements, the synthesis and structural characterization of [(AsP3)FeCp*(dppe)][BPh4] (dppe = 1,2-bis(diphenylphosphino)ethane), 1, selective single As-P bond cleavage reactions, including the synthesis and structural characterization of AsP3(P(N(iPr)2)N(SiMe3)2)2, 2, and activations of AsP3 by reactive early transition-metal fragments including Nb(H)(η2-tBu(H)C═NAr)(N[CH2tBu]Ar)2 and Mo(N[tBu]Ar)3 (Ar = 3,5-Me2C6H3). In the presence of reducing equivalents, AsP3 was found to allow access to [Na][E3Nb(ODipp)3] (Dipp = 2,6-diisopropylphenyl) complexes (E = As or P) which themselves allow access to mixtures of AsnP4−n (n = 1−4).National Science Foundation (U.S.) (grant CHE-719157)ThermPhos Internationa
    corecore