19 research outputs found
BAGAIMANA PROBLEM SOLVING GEOMETRI RUANG DARI LEVEL BERPIKIR VAN HIELE SISWA?
Tujuan dari penelitian ini adalah untuk mendeskripsikan profil kemampuan problem solving siswa pada masalah kubus dan balok berdasarkan level berpikir Van-Hiele. Profil kemampuan problem solving merupakan gambaran umum aktivitas memperoleh solusi dari masalah matematika yang dilakukan oleh siswa dengan menggunakan pengetahuan sebelumnya yang telah dimiliki. Subjek penelitian ini adalah siswa kelas VIII MTs. Al-Islah Citrodiwangsan Lumajang. Metode pengumpulan data dilakukan dengan tes dengan think-aloud dan wawancara berbasis tugas, sehingga instrumen yang digunakan: tes level berpikir Van-Hiele, tes pemecahan masalah, dan pedoman pelaksanaan wawancara. Hasil dari penelitian ini diperoleh kemampuan pemecahan masalah siswa dengan menggunakan langkah-langkah pemecahan masalah Polya adalah siswa level-0 (recognition) sebagai kategori yang cukup, subjek dapat memahami masalah, tetapi tidak dapat menyusun rencana, melaksanakan rencana, dan melihat kembali. Kemudian, siswa level-1 (analysis) dalam kategori yang baik, subjek dapat memahami masalah, mempu menyusun rencana kemudian melaksanakannya, tetapi tidak dapat melihat kembali. Namun, siswa level-2 (order) dalam kategori sangat baik, subjek menyelesaikan masalah sesuai dengan pola dengan sangat baik. Dari keterbatasan penelitian ini, rantai bantuan dengan scaffolding belum diberikan untuk meningkatkan dan memperbaiki kemampuan pemecahan masalah siswa perlu diselidiki untuk penelitian lebih lanjut
BERPIKIR KRITIS MAHASISWA MELALUI PROBLEM WITH CONTRADICTORY INFORMATION (PWCI) DALAM POTRET KEMAMPUAN PRASYARAT INDUKSI MATEMATIKA
Potret keterkaitan kemampuan awal dan kemampuan berpikir kritis matematis pada level pendidikan tinggi menjadi satu hal penting untuk dikaji secara Ă‚Â komprehensif. Tujuan penelitian ini mendeskripsikan kemampuan berpikir kritis mahasiswa calon guru matematika IAIN Kediri ketika menyelesaikan Problem with Contradictory Information (PWCI) berdasarkan kemampuan prasyarat pada induksi matematis.Ă‚Â Penelitian ini merupakan penelitian kualitatif deskriptif. Subjek penelitian merupakan mahasiswa semester 5 Tadris Matematika IAIN Kediri yang sedang menempuh mata kuliah Analisis Riil. Subjek dipilih berdasarkan kemampuan prasyarat tinggi, sedang, dan rendah pada materi induksi matematis.Ă‚Â Instrumen berupa soal tes kemampuan prasyarat dalam Induksi Matematika, soal tes berpikir kritis bernuansa PWCI, dan pedoman wawancara. Ă‚Â Hasil penelitian Ă‚Â menunjukkan tahap klarifikasi dapat dipenuhi dengan baik oleh tiap subjek. Mereka mengajukan masalah dengan tepat, kemudian mengidentifikasi bentuk interpretasi lain masalah. Tahap penilaian dipenuhi dengan cara mengevaluasi dugaan awal berupa bentuk simbol matematis. Tahap inferensi terlaksana dengan membuat generalisasi yang tepat. Penegasan proses identifikasinya berupa pola barisan yang terbentuk, meskipun ada generalisasi yang tidak sesuai yang dilakukan subjek tinggi dan sedang. Tahap strategi dilakukan subjek tinggi dan sedang dengan mengambil tindakan berupa guess and check. Hal ini berakibat salah satu subjek mengenali kontradiksi, namun yang lain tidak. Pada subjek rendah tidak ada yang mengenali kontradiksi yang ada. Oleh karena itu, diperlukan suatu pendekatan infusi dalam suatu pembelajaran kooperatif yang secara eksplisit memunculkan prinsip-prinsip atau komponen berpikir kritis
Metacognitive Failure in Constructing Proof and How to Scaffold it
This research aims to describe the students’ metacognitive failure in constructing proof and the scaffolding support. The participants of this qualitative case study were eight preservice mathematics teachers of six-semester, State University of Malang. We carried out a test about proof construction problems in Abstract Algebra. Then we verified the data using triangulation of constant comparative method from a test and a task-based interview with the stimulated recall. The results indicated two groups of students in proving strategy. Group I performed “appropriate” syntactic strategy and Group II vice versa. Blindness was experienced by the subject that does not recognize errors detection or the ambiguity of the proof. Mirage occurred when the subject recognizes an error detection on the proper strategy or application of a theorem, then is unable to verify the truth of his work. Misdirection appeared when the subject recognizes a lack of progress, then uses an incomplete or irrelevant concept. Vandalism emerged with no progress or detection of errors of the strategy then the subject performs some irrelevant steps to the issue or uses a misconception. Practically, the teachers can use these results for learning innovations in scaffolding-based proof courses. The scaffolding might need some development and application in supporting students to overcome difficulty in proving mathematical sentences. This study aims to obtain a description of the students’ metacognitive failure in constructing proof and the scaffolding. This study is a case study on two groups of undergraduate students of mathematics teacher candidates. Group I consists of undergraduate students who perform the proving using “appropriate” syntactic strategy, while in Group II the students using “inappropriate” syntactic strategy. Data are obtained through a test that contains proof construction problems in abstract algebra and task-based interviews with stimulated recall. Metacognitive failures experienced by students are blindness, mirage, misdirection, and vandalism. Each metacognitive failure appears in each group with different conditions but line with the characteristics of metacognitive failures. The scaffoldings were given under Anghileri' Scaffolding level 2 (reviewing and restructuring), and level 3 (developing and conceptual thinking)
KEMAMPUAN KONEKSI MATEMATIS SISWA DALAM MEMECAHKAN MASALAH HOTS LEVEL EVALUASI
This research aims to describe students' mathematical connection abilities, which can be seen from their problem-solving abilities when solving HOTS-level evaluation problems. This study uses a qualitative descriptive research method with the research subjects of class VIII G SMPN 1 Plosoklaten, Kediri, East Java, involving 30 students. Data were collected through the provision of mathematical connection tests and interviews. The test instrument consists of three questions that meet the indicators of mathematical connection. The results showed that students who had high problem-solving abilities, each problem solving were able to connect mathematical concepts, mathematics with other fields, and mathematics with everyday life. Students with moderate problem-solving abilities can solve all three of the HOTS-level evaluations related to mathematical connections, but have not been able to connect with other concepts. Students with low problem-solving abilities are less able to solve the three HOTS level evaluation questions related to mathematical connections, do not carry out the first stage, and every problem solving between concept does not connect between mathematical and other concepts, but every problem solving can connect with everyday life.Keywords: HOTS level evaluation; mathematical connection; problem solving  AbstrakTujuan penelitian ini untuk mendeskripsikan kemampuan koneksi matematis siswa ditinjau dari kemampuan pemecahan masalah ketika dalam memecahkan masalah HOTS level evaluasi. Penelitian ini menggunakan metode penelitian deskripsi kualitatif dengan subjek penelitian siswa kelas VIII G SMPN 1 Plosoklaten Kab. Kediri Jawa Timur, berjumlah 30 siswa. Data dikumpulkan melalui tes koneksi matematis dan wawancara. Instrumen tes terdiri dari tiga soal yang memenuhi indikator koneksi matematis. Hasil penelitian menunjukkan bahwa siswa yang berkemampuan pemecahan masalah tinggi, setiap tahapan pemecahan masalah mampu mengkoneksikan antar konsep matematika, matematika dengan bidang lain, dan matematika dengan kehidupan sehari-hari. Siswa berkemampuan pemecahan masalah sedang mampu memecahkan ketiga soal HOTS level evaluasi yang berkaitan dengan koneksi matematis, namun kurang mampu mengkoneksikan dengan konsep bidang lain. Siswa berkemampuan pemecahan masalah rendah kurang mampu memecahkan ketiga soal HOTS level evaluasi yang berkaitan dengan koneksi matematis, tidak melaksanakan tahap memeriksa kembali dan setiap tahapan pemecahan masalah kurang mengkoneksikan antar konsep matematika maupun bidang lain, namun setiap tahapan pemecahan masalah mampu mengkoneksikan dengan kehidupan sehari-hari.Kata Kunci: HOTS level evaluasi; koneksi matematis; pemecahan masalah  DOI: http://dx.doi.org/10.23960/mtk/v10i3.pp290-30
Smart Apps Creator: Mathematics Scientific-Based Interactive Multimedia for Improving Acceleration Program Students’ HOTS
It was found that the use of learning media in the form of modules and learning videos is not interactive so they make students feel bored and less active when the learning process. It causes students to have difficulty solving HOTS-type questions. Thus, this study aims to develop scientific-based interactive mathematics multimedia to increase the HOTS of accelerated students on similarity and congruence materials with the help of the Smart Apps Creator. This study uses the RD method with the ADDIE model. The data analysis technique in this research is descriptive and uses paired samples t-test. The instruments are a questionnaire for material and media expert validation, a questionnaire for teacher and student responses, a pre-test, and a post-test. The results of the validation of the material expert obtained the "Eligible" interpretation, the media expert obtained the "Very Eligible" interpretation obtained the "Eligible" interpretation. The results of the teacher's response, the student's response to the limited test, and the group test obtained the interpretation of "Very Eligible". By using the paired samples t-test, show a significance level of 0.000 was obtained where 0.000 0.05, which means that there was an increase in the HOTS of class VIII-J students after using the developed interactive mathematics multimedia. Based on the results obtained, the interactive mathematics multimedia developed can be used as a learning media for students
Students’ Metacognitive Skills in Solving Probability Investigation-Based Problem
This study aims to describe the metacognitive abilities of students in solving opportunity problems with nuanced investigations based on the mathematical abilities of grade 12 students in one of the high schools in Kediri Regency, East Java, Indonesia. This research uses a descriptive type, with a qualitative approach. Data collection techniques in the form of giving tests with the think-aloud method and semi-structured interviews. The research instrument consisted of a problem test with investigative-based and interview guidelines. The research participants consisted of three grade 12 students each with high, medium, and low mathematical abilities. The results of this study indicate that at the stage of understanding the problem, metacognitive activity appears in the form of awareness and evaluation. However, the low participant was not able awareness in a good way and the medium participant was not doing a careful evaluation of the results. In the planning stage, the high and medium participants currently use regulation activities by thinking about the right strategy. Evaluation activities, such as believing in the effectiveness of the strategy and assessing the results appropriately. In the stage of implementing the plan, the high and medium participants are using regulation activities by monitoring the planned solutions properly. Evaluation activities are carried out with an appropriate assessment of each result. However, the opposite appeared for low participant in both previous stages. In the stage of looking back, evaluation activity appears in the form of assessing the suitability of answers to the context of the problem with investigative nuances, but no metacognitive activity was found in low participant
Etnomatematika: Geometri Transformasi Dalam Konteks Monumen Simpang Lima Gumul Kediri
Penelitian ini bertujuan untuk mengeksplorasi unsur matematika geometri transformasi pada Monumen Simpang Lima Gumul (SLG) sebagai ikon kota dan pusat aktivitas masyarakat Kediri. Penelitian ini dikategorikansebagai penelitian deskriptif kualitatif dengan pendekatan etnografi. Pengambilan data dilakukan dengan teknik observasi, dokumentasi, dan studi literatur.Hasil penelitian menunjukkan beberapa unsur translasi, refleksi, refleksi, dan dilatasi ada pada setiap sisi monumen dan kawasan di sekitar monumen SLG. Unsur geometri pengubinan atau teselasi beraturan berupa grup wallpaper dan grup frieze ditemukan pada satu pola ubin yang ada di sekitar kawasan Monumen SLG. Temuan ini dapat dimanfaatkan sebagai bahan pengembangan dan inovasi media pembelajaran dalam konteks budaya lokal, khususnya topik geometri transformasi
Fun with SPLDV: Multimedia Lectora Inspire Menguatkan Pemahaman Konsep Matematika Siswa
This study aims to describe the process of developing interactive multimedia learning mathematics Lectora Inspire that satisfies criteria: valid, practical, and effective to reinforce the conceptual understanding of 8th graders of junior high school, especially on Linear Equation System in Two Variables (LESTV) topic. This research uses the Analysis, Design, Development, Implementation, and Evaluation (ADDIE) model. The result of media and content expert validation showed an average score of 84% and 83.5%, respectively, such that it met the valid criteria and without revision. The result of the student questionnaire said that the media was good with scores of 79% and the average point of the test was 86.5 of 100. It showed that the student concept understanding was complete after using the media. The media need to be improved before it was used broader
Potret Keterampilan Metakognitif Problem Solving dalam Level Penalaran Kontroversial Siswa
The purpose of this study is to describe the metacognitive problem-solving skills of class X SMA Negeri 1 Kediri students at the level of initial controversial reasoning, exploration, and clarification, when solving irrational inequality problems. This research is descriptive research with a qualitative approach. Data collection techniques used controversial problem tests, problem-solving tests, think-aloud methods, and task-based semi-structured interviews. The data analysis technique used was qualitative data analysis with steps of data reduction, data presentation, and conclusion. The validity of the data used triangulation techniques and member checks. The results show that students' metacognitive problem-solving skills at the initial controversial reasoning level can meet the three indicators of metacognitive activity at the stage of understanding problems and determining the problem-solving strategy plan. Students' metacognitive problem-solving skills at the level of exploration can fulfill the three indicators of metacognitive activity at the stage of understanding problems, determining the problem-solving strategy plans, and completing problem-solving strategies. Students' metacognitive problem-solving skills at the level of clarification can meet the three indicators of metacognitive activity at the stage of understanding the problem, determining the problem-solving strategy plan, completing the problem-solving strategy, and looking back