24 research outputs found

    Dependence of multiply charged ions on the polarization state in nanosecond laser-benzene cluster interaction

    No full text
    This paper investigated the dependence of multiply charged ions on the laser polarization state when benzene cluster was irradiated with 532 and 1064 nm nanosecond laser. A circle, square and flower distribution for C2+, C3+ and C4+ were observed with 532 nm laser respectively, while flower petals for C2+, C3+ and C4+ were observed at 1064 nm as the laser polarization varied. A theoretical calculation was performed to interpret the polarization state and wavelength dependence of the multiply charged ions. The simulated results agreed well with the experimental observation with considering the contribution from the cluster disintegration. (C) 2016 Elsevier B.V. All rights reserved

    Rapid Determination of Six Low Molecular Carbonyl Compounds in Tobacco Smoke by the APCI-MS/MS Coupled to Data Mining

    No full text
    A simple method was established for the rapid determination of low molecular carbonyl compounds by the combination of atmospheric pressure chemical ionization tandem mass spectrometry (APCI-MS/MS) and data mining. The ionization was carried out in positive mode, and six low molecular carbonyl compounds of acrolein, acetone, propionaldehyde, crotonaldehyde, butanone, and butyraldehyde were analyzed by both full scan mode and daughter scan mode. To overcome the quantitative difficulties from isomer of acetone/propionaldehyde and butanone/butyraldehyde, the quantitation procedure was performed with the characteristic ion of [CH3O]+ under CID energy of 5 and 15 eV. Subsequently, the established method was successfully applied to analysis of six low molecular carbonyl compounds in tobacco smoke with analytical period less than four minutes. The contents of acrolein, acetone, propionaldehyde, crotonaldehyde, butanone, and butyraldehyde for a cigarette were about 63±5.8, 325±82, 55±9.7, 11±1.4, 67±5.9, and 12±1.8 μg/cig, respectively. The experimental results indicated that the established method had the potential application in rapid determination of low molecular carbonyl compounds

    Determination of Six Macrolide Antibiotics in Chicken Sample by Liquid Chromatography-Tandem Mass Spectrometry Based on Solid Phase Extraction

    No full text
    In this paper, a simple and effective method for the determination of six macrolide antibiotics (MACs), including tylosin, tilmicosin, azithromycin, clarithromycin, roxithromycin, and kitasamycin, in the chicken sample using liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed based on a self-built porous aromatic framework- (PAF-) based solid phase sorbent. The main parameters influencing the extraction efficiency, such as sorbent amounts, type of the eluent, pH of the sample, and the eluent volume, were evaluated. Under the optimized condition, the limits of detection were from 0.2 to 0.5 μg·kg−1. The recoveries of the method ranged from 82.1% to 101.4% with the relative standard deviations less than 11.1%. All the results demonstrated that the established method is potential for the determination of macrolide antibiotics in food safety analysis and monitoring

    Ellipticity-dependent of multiple ionisation methyl iodide cluster using 532 nm nanosecond laser

    No full text
    The dependence of multiply charged ions on laser ellipticity in methyl iodide clusters with 532nm nanosecond laser was measured using a time-of-flight mass spectrometer. The intensities of multiply charged ions I-q(+)(q = 2-4) with circularly polarised laser pulse were clearly higher than those with linearly polarised laser pulse but the intensity of single charged ions I+ was inverse. And the dependences of ions on the optical polarisation state were investigated and a flower petal and square distribution for single charged ions (I+, C+) and multiply charged ions (I2+, I3+, I4+, C2+) were observed, respectively. A theoretical calculation was also proposed to simulate the distributions of ions and theoretical results fitted well with the experimental ones. It indicated that the high multiphoton ionisation probability in the initial stage would result in the disintegration of big clusters into small ones and suppress the production of multiply charged ions

    Contamination profiles and potential health risks of environmentally persistent free radicals in PM2.5 over typical central Chinese megacity

    No full text
    As one of the most important transportation hubs and industrial bases in China, Zhengzhou has suffered from serious PM2.5 pollution for a long time. However, the investigation of contamination status and possible exposure risks of environmentally persistent free radicals (EPFRs) in PM2.5 from Zhengzhou is rare. In this work, a comprehensive study of pollution levels, seasonal variations, sources, and potential health risks of PM2.5-bound EPFRs in Zhengzhou was conducted for the first time. The atmospheric concentrations of EPFRs in PM2.5 from Zhengzhou ranged from 1.732 × 1012 spin m−3 to 7.182 × 1014 spin m−3 between 2019 and 2020. Relatively serious contamination was noticed in winter and spring. Primary fossil fuel combustion and Fe-mediated secondary formation were apportioned as possible sources of PM2.5-bound EPFRs in Zhengzhou. Moreover, to avert the bias of the toxicity assessment induced by utilization of incompletely extracted EPFRs from sample filter, simulatively generated EPFRs were applied to toxicological evaluations (cell viability and reactive oxygen species assays). Corresponding experimental dosages were based on the estimated adults’ annual exposure amounts of EPFRs in real PM2.5 samples. The results elucidated that EPFRs might cause growth inhibition and oxidative stress of human lung cells, suggesting the possible exposure-induced health concerns for local people in Zhengzhou. This study provides practical information of real contamination status of PM2.5-bound EPFRs in Zhengzhou, which is favorable to local air pollution control and reduction of exposure risks on public health in central China

    Simultaneous determination of three sulfanilamide artificial sweeteners in foodstuffs by capillary electrophoesis coupled with contactless conductivity detection based on porous aromatic frameworks enhanced solid phase extraction

    No full text
    In this paper, a simple and easy-operating method of solid phase extraction (SPE) followed by capillary electrophoresis (CE) with capacitively coupled contactless conductivity detection (C4D) is evaluated as a novel approach for the simultaneously determination of acesulfame-K (ACE), sodium saccharin (SAC) and sodium cyclamate (CYC) in foodstuffs without derivatization. In order to reduce the complex matrix interference resulting from the constituents of samples and enrich targets, porous aromatic frameworks (PAFs) enhanced SPE, a suitable sample pretreatment procedure was introduced. Several factors affecting extraction efficiency and electrophoretic separation were investigated. Additionally, The interaction mechanisms of host (PAF–6)–guests (ACE/SAC/CYC) were further studied. Under the optimum conditions, three sulfanilamide artificial sweeteners were baseline separated within 8 min, exhibiting a linear calibration over three orders of magnitude (R2>0.995); The limits of detection (LOD) and quantification (LOQ) were considered better than those usually obtained by CE with UV and C4D detection. The proposed SPE–CE–C4D method has been successfully applied to analyse beverage samples and candied fruits with recoveries in the range of 78.89–92.00%.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Introgression of pigs in Taihu Lake region possibly contributed to the improvement of fertility in Danish Large White pigs

    No full text
    Abstract Background Eurasian pigs have undergone lineage admixture throughout history. It has been confirmed that the genes of indigenous pig breeds in China have been introduced into Western commercial pigs, providing genetic materials for breeding Western pigs. Pigs in Taihu Lake region (TL), such as the Meishan pig and Erhualian pig, serve as typical representatives of indigenous pig breeds in China due to their high reproductive performances. These pigs have also been imported into European countries in 1970 and 1980 s. They have played a positive role in improving the reproductive performances in European commercial pigs such as French Large White pigs (FLW). However, it is currently unclear if the lineage of TL pigs have been introgressed into the Danish Large White pigs (DLW), which are also known for their high reproductive performances in European pigs. To systematically identify genomic regions in which TL pigs have introgressed into DLW pigs and their physiological functions, we collected the re-sequencing data from 304 Eurasian pigs, to identify shared haplotypes between DLW and TL pigs. Results The findings revealed the presence of introgressed genomic regions from TL pigs in the genome of DLW pigs indeed. The genes annotated within these regions were found to be mainly enriched in neurodevelopmental pathways. Furthermore, we found that the 115 kb region located in SSC16 exhibited highly shared haplotypes between TL and DLW pigs. The major haplotype of TL pigs in this region could significantly improve reproductive performances in various pig populations. Around this genomic region, NDUFS4 gene was highly expressed and showed differential expression in multiple reproductive tissues between extremely high and low farrowing Erhualian pigs. This suggested that NDUFS4 gene could be an important candidate causal gene responsible for affecting the reproductive performances of DLW pigs. Conclusions Our study has furthered our knowledge of the pattern of introgression from TL into DLW pigs and the potential effects on the fertility of DLW pigs

    Untargeted Metabolomics Using UHPLC-HRMS Reveals Metabolic Changes of Fresh-Cut Potato during Browning Process

    No full text
    Surface browning plays a major role in the quality loss of fresh-cut potatoes. Untargeted metabolomics were used to understand the metabolic changes of fresh-cut potato during the browning process. Their metabolites were profiled by ultra-high performance liquid chromatography coupled with high resolution mass spectrometry (UHPLC-HRMS). Data processing and metabolite annotation were completed by Compound Discoverer 3.3 software. Statistical analysis was applied to screen the key metabolites correlating with browning process. Fifteen key metabolites responsible for the browning process were putatively identified. Moreover, after analysis of the metabolic causes of glutamic acid, linolenic acid, glutathione, adenine, 12-OPDA and AMP, we found that the browning process of fresh-cut potatoes was related to the structural dissociation of the membrane, oxidation and reduction reaction and energy shortage. This work provides a reference for further investigation into the mechanism of browning in fresh-cut products
    corecore