31 research outputs found

    Modeling Paragraph-Level Vision-Language Semantic Alignment for Multi-Modal Summarization

    Full text link
    Most current multi-modal summarization methods follow a cascaded manner, where an off-the-shelf object detector is first used to extract visual features, then these features are fused with language representations to generate the summary with an encoder-decoder model. The cascaded way cannot capture the semantic alignments between images and paragraphs, which are crucial to a precise summary. In this paper, we propose ViL-Sum to jointly model paragraph-level \textbf{Vi}sion-\textbf{L}anguage Semantic Alignment and Multi-Modal \textbf{Sum}marization. The core of ViL-Sum is a joint multi-modal encoder with two well-designed tasks, image reordering and image selection. The joint multi-modal encoder captures the interactions between modalities, where the reordering task guides the model to learn paragraph-level semantic alignment and the selection task guides the model to selected summary-related images in the final summary. Experimental results show that our proposed ViL-Sum significantly outperforms current state-of-the-art methods. In further analysis, we find that two well-designed tasks and joint multi-modal encoder can effectively guide the model to learn reasonable paragraphs-images and summary-images relations

    Low-Resource Response Generation with Template Prior

    Full text link
    We study open domain response generation with limited message-response pairs. The problem exists in real-world applications but is less explored by the existing work. Since the paired data now is no longer enough to train a neural generation model, we consider leveraging the large scale of unpaired data that are much easier to obtain, and propose response generation with both paired and unpaired data. The generation model is defined by an encoder-decoder architecture with templates as prior, where the templates are estimated from the unpaired data as a neural hidden semi-markov model. By this means, response generation learned from the small paired data can be aided by the semantic and syntactic knowledge in the large unpaired data. To balance the effect of the prior and the input message to response generation, we propose learning the whole generation model with an adversarial approach. Empirical studies on question response generation and sentiment response generation indicate that when only a few pairs are available, our model can significantly outperform several state-of-the-art response generation models in terms of both automatic and human evaluation.Comment: Accepted by EMNLP201

    Retrieval-Augmented Classification with Decoupled Representation

    Full text link
    Retrieval augmented methods have shown promising results in various classification tasks. However, existing methods focus on retrieving extra context to enrich the input, which is noise sensitive and non-expandable. In this paper, following this line, we propose a kk-nearest-neighbor (KNN) -based method for retrieval augmented classifications, which interpolates the predicted label distribution with retrieved instances' label distributions. Different from the standard KNN process, we propose a decoupling mechanism as we find that shared representation for classification and retrieval hurts performance and leads to training instability. We evaluate our method on a wide range of classification datasets. Experimental results demonstrate the effectiveness and robustness of our proposed method. We also conduct extra experiments to analyze the contributions of different components in our model.\footnote{\url{https://github.com/xnliang98/knn-cls-w-decoupling}}Comment: preprin
    corecore