8,113 research outputs found

    Gridless Two-dimensional DOA Estimation With L-shaped Array Based on the Cross-covariance Matrix

    Full text link
    The atomic norm minimization (ANM) has been successfully incorporated into the two-dimensional (2-D) direction-of-arrival (DOA) estimation problem for super-resolution. However, its computational workload might be unaffordable when the number of snapshots is large. In this paper, we propose two gridless methods for 2-D DOA estimation with L-shaped array based on the atomic norm to improve the computational efficiency. Firstly, by exploiting the cross-covariance matrix an ANM-based model has been proposed. We then prove that this model can be efficiently solved as a semi-definite programming (SDP). Secondly, a modified model has been presented to improve the estimation accuracy. It is shown that our proposed methods can be applied to both uniform and sparse L-shaped arrays and do not require any knowledge of the number of sources. Furthermore, since our methods greatly reduce the model size as compared to the conventional ANM method, and thus are much more efficient. Simulations results are provided to demonstrate the advantage of our methods

    Far-Field Tunable Nano-focusing Based on Metallic Slits Surrounded with Nonlinear-Variant Widths and Linear-Variant Depths of Circular Dielectric Grating

    Full text link
    In this work, we design a new tunable nanofocusing lens by the linear-variant depths and nonlinear-variant widths of circular grating for far field practical applications. The constructively interference of cylindrical surface plasmon launched by the subwavelength metallic structure can form a subdiffraction-limited focus, and the focal length of the this structures can be adjusted if the each groove depth and width of circular grating are arranged in traced profile. According to the numerical calculation, the range of focusing points shift is much more than other plasmonic lens, and the relative phase of emitting light scattered by surface plasmon coupling circular grating can be modulated by the nonlinear-variant width and linear-variant depth. The simulation result indicates that the different relative phase of emitting light lead to variant focal length. We firstly show a unique phenomenon for the linear-variant depths and nonlinear-variant widths of circular grating that the positive change and negative change of the depths and widths of grooves can result in different of variation trend between relative phases and focal lengths. These results paved the road for utilizing the plasmonic lens in high-density optical storage, nanolithography, superresolution optical microscopic imaging, optical trapping, and sensing.Comment: 14pages,9figure

    Monolayer Molybdenum Disulfide Nanoribbons with High Optical Anisotropy

    Full text link
    Two-dimensional Molybdenum Disulfide (MoS2) has shown promising prospects for the next generation electronics and optoelectronics devices. The monolayer MoS2 can be patterned into quasi-one-dimensional anisotropic MoS2 nanoribbons (MNRs), in which theoretical calculations have predicted novel properties. However, little work has been carried out in the experimental exploration of MNRs with a width of less than 20 nm where the geometrical confinement can lead to interesting phenomenon. Here, we prepared MNRs with width between 5 nm to 15 nm by direct helium ion beam milling. High optical anisotropy of these MNRs is revealed by the systematic study of optical contrast and Raman spectroscopy. The Raman modes in MNRs show strong polarization dependence. Besides that the E' and A'1 peaks are broadened by the phonon-confinement effect, the modes corresponding to singularities of vibrational density of states are activated by edges. The peculiar polarization behavior of Raman modes can be explained by the anisotropy of light absorption in MNRs, which is evidenced by the polarized optical contrast. The study opens the possibility to explore quasione-dimensional materials with high optical anisotropy from isotropic 2D family of transition metal dichalcogenides

    A New Two-Dimensional Functional Material with Desirable Bandgap and Ultrahigh Carrier Mobility

    Full text link
    Two-dimensional (2D) semiconductors with direct and modest bandgap and ultrahigh carrier mobility are highly desired functional materials for nanoelectronic applications. Herein, we predict that monolayer CaP3 is a new 2D functional material that possesses not only a direct bandgap of 1.15 eV (based on HSE06 computation), and also a very high electron mobility up to 19930 cm2 V-1 s-1, comparable to that of monolayer phosphorene. More remarkably, contrary to the bilayer phosphorene which possesses dramatically reduced carrier mobility compared to its monolayer counterpart, CaP3 bilayer possesses even higher electron mobility (22380 cm2 V-1 s-1) than its monolayer counterpart. The bandgap of 2D CaP3 can be tuned over a wide range from 1.15 to 0.37 eV (HSE06 values) through controlling the number of stacked CaP3 layers. Besides novel electronic properties, 2D CaP3 also exhibits optical absorption over the entire visible-light range. The combined novel electronic, charge mobility, and optical properties render 2D CaP3 an exciting functional material for future nanoelectronic and optoelectronic applications
    corecore