118,399 research outputs found

    Efficient Monte Carlo Methods for Cyclic Peptides

    Full text link
    We present a new, biased Monte Carlo scheme for simulating complex, cyclic peptides. Backbone atoms are equilibrated with a biased rebridging scheme, and side-chain atoms are equilibrated with a look-ahead configurational bias Monte Carlo. Parallel tempering is shown to be an important ingredient in the construction of an efficient approach.Comment: LaTeX source, 10 EPS figures, to appear in Molecular Physic

    Novel dynamical effects and glassy response in strongly correlated electronic system

    Full text link
    We find an unconventional nucleation of low temperature paramagnetic metal (PMM) phase with monoclinic structure from the matrix of high-temperature antiferromagnetic insulator (AFI) phase with tetragonal structure in strongly correlated electronic system BaCo0.9Ni0.1S1.97BaCo_{0.9}Ni_{0.1}S_{1.97}. Such unconventional nucleation leads to a decease in resistivity by several orders with relaxation at a fixed temperature without external perturbation. The novel dynamical process could arise from the competition of strain fields, Coulomb interactions, magnetic correlations and disorders. Such competition may frustrate the nucleation, giving rise to a slow, nonexponential relaxation and "physical aging" behavior.Comment: 5 pages, 4 figure

    Surface Contribution to Raman Scattering from Layered Superconductors

    Full text link
    Generalizing recent work, the Raman scattering intensity from a semi-infinite superconducting superlattice is calculated taking into account the surface contribution to the density response functions. Our work makes use of the formalism of Jain and Allen developed for normal superlattices. The surface contributions are shown to strongly modify the bulk contribution to the Raman-spectrum line shape below 2Δ2\Delta, and also may give rise to additional surface plasmon modes above 2Δ2\Delta. The interplay between the bulk and surface contribution is strongly dependent on the momentum transfer q∥q_\parallel parallel to layers. However, we argue that the scattering cross-section for the out-of-phase phase modes (which arise from interlayer Cooper pair tunneling) will not be affected and thus should be the only structure exhibited in the Raman spectrum below 2Δ2\Delta for relatively large q∥∼0.1Δ/vFq_\parallel\sim 0.1\Delta/v_F. The intensity is small but perhaps observable.Comment: 14 pages, RevTex, 6 figure

    Electronic, dynamical, and thermal properties of ultra-incompressible superhard rhenium diboride: A combined first-principles and neutron scattering study

    Get PDF
    Rhenium diboride is a recently recognized ultra-incompressible superhard material. Here we report the electronic (e), phonon (p), e-p coupling and thermal properties of ReB2_2 from first-principles density-functional theory (DFT) calculations and neutron scattering measurements. Our calculated elastic constants (c11c_{11} = 641 GPa, c12c_{12} = 159 GPa, c13c_{13} = 128 GPa, c33c_{33} = 1037 GPa, and c44c_{44} = 271 GPa), bulk modulus (BB ≈\approx 350 GPa) and hardness (HH ≈\approx 46 GPa) are in good agreement with the reported experimental data. The calculated phonon density of states (DOS) agrees very well with our neutron vibrational spectroscopy result. Electronic and phonon analysis indicates that the strong covalent B-B and Re-B bonding is the main reason for the super incompressibility and hardness of ReB2_2. The thermal expansion coefficients, calculated within the quasi-harmonic approximation and measured by neutron powder diffraction, are found to be nearly isotropic in aa and cc directions and only slightly larger than that of diamond in terms of magnitude. The excellent agreement found between calculations and experimental measurements indicate that first-principles calculations capture the main interactions in this class of superhard materials, and thus can be used to search, predict, and design new materials with desired properties.Comment: submitted to pr
    • …
    corecore