1,661 research outputs found

    Mechanisms of High Temperature Degradation of Thermal Barrier Coatings.

    Get PDF
    Thermal barrier coatings (TBCs) are crucial for increasing the turbine inlet temperature (and hence efficiency) of gas turbine engines. The thesis describes PhD research aimed at improving understanding of the thermal cycling failure mechanisms of electron beam physical vapour deposited (EB-PVD) yttria stabilised zirconia (YSZ) TBCs on single crystal superalloys. The research consisted of three different stages. The first stage involved designing a coupled one-dimensional thermodynamic-kinetic oxidation and diffusion model capable of predicting the concentration profiles of alloying elements in a single-phase Îł nickel-rich Ni-Al-Cr ternary alloy by the finite difference method. The aim of this investigation was to improve the understanding of interactions between alloying species and developing oxide. The model demonstrated that in the early stages of oxidation, Al consumption by oxide scale growth is faster than Al replenishment by diffusion towards the scale, resulting in an initial Al depletion in the alloy near the scale. The second stage involved a systematic study of the life-time of TBC systems on different single crystal superalloys. The study aimed at demonstrating that the compatibility of modern nickel-based single crystal superalloys with TBC systems is influenced strongly by the content of alloying element additions in the superalloy substrate. The results can be explained by postulating that the fracture toughness parameters controlling decohesion are influenced strongly by small changes in composition arising from interdiffusion with the bond coat, which itself inherits elemental changes from the substrate. The final stage of study involved a detailed study of different bond coats (two ÎČ-structured Pt-Al types and a Îł/γ’ Pt-diffusion type) in TBC systems based on an EB-PVD YSZ top coat and a substrate material of CMSX-4 superalloy. Generation of stress in the thermally grown oxide (TGO) on thermal cycling, and its relief by plastic deformation and fracture, were investigated experimentally in detail

    Distributed Approximation of Minimum Routing Cost Trees

    Full text link
    We study the NP-hard problem of approximating a Minimum Routing Cost Spanning Tree in the message passing model with limited bandwidth (CONGEST model). In this problem one tries to find a spanning tree of a graph GG over nn nodes that minimizes the sum of distances between all pairs of nodes. In the considered model every node can transmit a different (but short) message to each of its neighbors in each synchronous round. We provide a randomized (2+Ï”)(2+\epsilon)-approximation with runtime O(D+log⁥nÏ”)O(D+\frac{\log n}{\epsilon}) for unweighted graphs. Here, DD is the diameter of GG. This improves over both, the (expected) approximation factor O(log⁥n)O(\log n) and the runtime O(Dlog⁥2n)O(D\log^2 n) of the best previously known algorithm. Due to stating our results in a very general way, we also derive an (optimal) runtime of O(D)O(D) when considering O(log⁥n)O(\log n)-approximations as done by the best previously known algorithm. In addition we derive a deterministic 22-approximation

    Squeezing based on nondegenerate frequency doubling internal to a realistic laser

    Get PDF
    We investigate theoretically the quantum fluctuations of the fundamental field in the output of a nondegenerate second harmonic generation process occuring inside a laser cavity. Due to the nondegenerate character of the nonlinear medium, a field orthogonal to the laser field is for some operating conditions indepedent of the fluctuations produced by the laser medium. We show that this fact may lead to perfect squeezing for a certain polarization mode of the fundamental field. The experimental feasibility of the system is also discussed.Comment: 6 pages, 5 figure

    Modelling the Linkage Between Landscape Metrics and Water Quality Indices of Hydrological Units in Sihu Basin, Hubei Province, China: An Allometric Model

    Get PDF
    AbstractStudying quantitative relationships between landscape pattern and water quality is a fundamental step to assess the impacts of non-point source pollution. Many hydrological models with multi-functionality have been developed as useful tools to study several key mechanisms in non-point source pollution. In landscape ecological studies, however, the empirical modelling approaches have been dominated with emphasis on the relationships between the landscape metrics and water quality indices. The main techniques for developing those models of landscape-water quality are statistical regression analysis based on linear models. In this article, Allometric models and the traditional multiple linear regression models for estimating the linkage between landscape metrics and water quality were tested in Sihu Basin, Hubei Province, China. The models at patch class level were established in 24 hydrological units of the basin, which took nine water quality indices (EC, pH, SS, DO, COD, TN, TP, NO3--N, NH4+-N) as the dependent variables and eighteen landscape metrics calculated in FRAGSTATS 3.3 as independent variables. The results suggested that, compared with the traditional multiple linear regression models, Allometric models were more suitable for SS, DO, TP, TN, NH4+-N, in which landscape pattern metrics could explain the 80.5%, 77.7%, 58.2%, 43.9%, 67.6% of total variation, respectively. There had little difference between multiple linear regression models and Allometric models for EC and NO3--N. The coefficients of determination in Allometric models were not as strong as that obtained in the multiple linear regression models for pH and COD. The above results indicated that using Allometric model may potentially provide a new way to study the linkage between landscape metrics and water quality indices, which will help protect our regional water resources

    Ionizing radiation absorption of vascular surgeons during endovascular procedures

    Get PDF
    ObjectiveEndovascular procedures have become an integral part of a vascular surgeon’s practice. The exposure of surgeons to ionizing radiation and other safety issues have not been well studied. We investigated the radiation exposure of a team of vascular surgeons in an active endovascular unit and compared yearly dosages absorbed by various body parts among different surgeons. Patients’ radiation exposure was also assessed.MethodsThe radiation absorption of a team of vascular surgeons was prospectively monitored in a 12-month period. During each endovascular procedure, the effective body, eye, and hand radiation doses of all participating surgeons were measured by mini-thermoluminescent dosimeters (TLD) attached at the chest level under a lead apron, at the forehead at eye level, and at the hand. The type of procedure, fluoroscopy machine, fluoroscopy time, and personal and operating theatre radiation protection devices used in each procedure were also recorded. One TLD was attached to the patient’s body near the operative site to measure the patient’s dose. The yearly effective body, eye, and hand dose were compared with the safety limits of radiation for occupational exposure recommended by the International Commission on Radiation Protection (ICRP). The radiation absorption of various body parts per minute of fluoroscopy was compared among different surgeons.ResultsA total of 149 consecutive endovascular procedures were performed, including 30 endovascular aortic repairs (EVAR), 58 arteriograms with and without embolization (AGM), and 61 percutaneous transluminal angioplasty and stent (PTA/S) procedures. The cumulative fluoroscopy time was 1132 minutes. The median yearly effective body, eye, and hand dose for the surgeons were 0.20 mSv (range, 0.13 to 0.27 mSv), 0.19 mSv (range, 0.10 to 0.33 mSv) and 0.99 mSv (0.29 to 1.84 mSv) respectively, which were well below the safety limits of the ICRP. The mean body, eye, and hand dose of the chief surgeon per procedure were highest for EVAR. A significant discrepancy was observed for the average hand dose per minute of fluoroscopy among different surgeons. The mean radiation absorption of patients who underwent EVAR, AGM, and PTA/S was 12.7 mSv, 13.6 mSv, and 3.4 mSv, respectively.ConclusionWith current radiation protection practice, the radiation absorbed by vascular surgeons with a high endovascular workload did not exceed the safety limits recommended by ICRP. Variations in practice, however, can result in significant discrepancy of radiation absorption between surgeons

    In vitro assay to estimate tea astringency via observing flotation of artificial oil bodies sheltered by caleosin fused with histatin 3

    Get PDF
    AbstractAstringency, a sensory characteristic of food and beverages rich in polyphenols, mainly results from the formation of complexes between polyphenols and salivary proteins, causing a reduction of the lubricating properties of saliva. To develop an in vitro assay to estimate the astringency of oolong tea infusion, artificial oil bodies were constituted with sesame oil sheltered by a modified caleosin fused with histatin 3, one of the human salivary small peptides. Aggregation of artificial oil bodies was induced when they were mixed with oolong tea infusion or its major polyphenolic compound, (−)-epigallocatechin gallate (EGCG) of 100ÎŒM as observed in light microscopy. The aggregated artificial oil bodies gradually floated on top of the solution and formed a visible milky layer whose thickness was in proportion to the concentrations of tea infusion. This assay system was applied to test four different oolong tea infusions with sensory astringency corresponding to their EGCG contents. The result showed that relative astringency of the four tea infusions was correlated to the thickness of floated artificial oil bodies, and could be estimated according to the standard curve generated by simultaneously observing a serial dilution of the tea infusion with the highest astringency

    Assessing impacts of typhoons and the Chi-Chi earthquake on Chenyulan watershed landscape pattern in Central Taiwan using landscape metrics

    Get PDF
    The Chi-Chi earthquake (M-L = 7.3) occurred in the central part of Taiwan on September 21, 1999. After the earthquake, typhoons Xangsane and Toraji produced heavy rainfall that fell across the eastern and central parts of Taiwan on November 2000 and July 2001. This study uses remote sensing data, landscape metrics, multivariate statistical analysis, and spatial autocorrelation to assess how earthquake and typhoons affect landscape patterns. It addresses variations of the Chenyulan watershed in Nantou County, near the earthquake's epicenter and crossed by Typhoon Toraji. The subsequent disturbances have gradually changed landscape of the Chenyulan watershed. Disturbances of various types, sizes, and intensities, following various tracks, have various effects on the landscape patterns and variations of the Chenyulan watershed. The landscape metrics that are obtained by multivariate statistical analyses showed that the disturbances produced variously fragmented patches, interspersed with other patches and isolated from patches of the same type across the entire Chenyulan watershed. The disturbances also affected the isolation, size, and shape-complexity of patches at the landscape and class levels. The disturbances at the class level more strongly affected spatial variations in the landscape as well as patterns of grasslands and bare land, than variations in the watershed farmland and forest. Moreover, the earthquake with high magnitude was a starter to create these landscape variations in space in the Chenyulan watershed. The cumulative impacts of the disturbances on the watershed landscape pattern had existed, especially landslides and grassland in the study area, but were not always evident in space and time in landscape and other class levels

    On the Potts model partition function in an external field

    Full text link
    We study the partition function of Potts model in an external (magnetic) field, and its connections with the zero-field Potts model partition function. Using a deletion-contraction formulation for the partition function Z for this model, we show that it can be expanded in terms of the zero-field partition function. We also show that Z can be written as a sum over the spanning trees, and the spanning forests, of a graph G. Our results extend to Z the well-known spanning tree expansion for the zero-field partition function that arises though its connections with the Tutte polynomial

    Experimental Vacuum Squeezing in Rubidium Vapor via Self-Rotation

    Full text link
    We report the generation of optical squeezed vacuum states by means of polarization self-rotation in rubidium vapor following a proposal by Matsko et al. [Phys. Rev. A 66, 043815 (2002)]. The experimental setup, involving in essence just a diode laser and a heated rubidium gas cell, is simple and easily scalable. A squeezing of 0.85+-0.05 dB was achieved

    Temperature-dependent NMR features of the Al65Cu20Ru15 icosahedral alloy

    Get PDF
    The Al65Cu20Ru15 icosahedral alloy was studied by Al27 nuclear magnetic resonance from 150 to 1110 K. The Knight shift of the unresolved resonance line was observed to significantly increase above 500 K. This uncommon temperature dependence of the Knight shift is interpreted in terms of the presence of a pseudogap at the Fermi level. The spin-lattice relaxation rate deviates from the linear temperature dependence of Korringa relaxation below 500 K, and above 500 K it is dominated by a thermally activated process with a small activation energy of 0.48 eV. This energy is distinctly different from the activation energy observed in simple metallic alloys
    • 

    corecore