33 research outputs found

    DIELECTRIC PARAMETERS MEASUREMENT OF ROCK AND ORE SAMPLES

    Get PDF

    SSTA: Salient Spatially Transformed Attack

    Full text link
    Extensive studies have demonstrated that deep neural networks (DNNs) are vulnerable to adversarial attacks, which brings a huge security risk to the further application of DNNs, especially for the AI models developed in the real world. Despite the significant progress that has been made recently, existing attack methods still suffer from the unsatisfactory performance of escaping from being detected by naked human eyes due to the formulation of adversarial example (AE) heavily relying on a noise-adding manner. Such mentioned challenges will significantly increase the risk of exposure and result in an attack to be failed. Therefore, in this paper, we propose the Salient Spatially Transformed Attack (SSTA), a novel framework to craft imperceptible AEs, which enhance the stealthiness of AEs by estimating a smooth spatial transform metric on a most critical area to generate AEs instead of adding external noise to the whole image. Compared to state-of-the-art baselines, extensive experiments indicated that SSTA could effectively improve the imperceptibility of the AEs while maintaining a 100\% attack success rate

    Engineering Microbial Consortia for High-Performance Cellulosic Hydrolyzates-Fed Microbial Fuel Cells

    Get PDF
    Microbial fuel cells (MFCs) are eco-friendly bio-electrochemical reactors that use exoelectrogens as biocatalyst for electricity harvest from organic biomass, which could also be used as biosensors for long-term environmental monitoring. Glucose and xylose, as the primary ingredients from cellulose hydrolyzates, is an appealing substrate for MFC. Nevertheless, neither xylose nor glucose can be utilized as carbon source by well-studied exoelectrogens such as Shewanella oneidensis. In this study, to harvest the electricity by rapidly harnessing xylose and glucose from corn stalk hydrolysate, we herein firstly designed glucose and xylose co-fed engineered Klebsiella pneumoniae-S. oneidensis microbial consortium, in which K. pneumoniae as the fermenter converted glucose and xylose into lactate to feed the exoelectrogens (S. oneidensis). To produce more lactate in K. pneumoniae, we eliminated the ethanol and acetate pathway via deleting pta (phosphotransacetylase gene) and adhE (alcohol dehydrogenase gene) and further constructed a synthesis and delivery system through expressing ldhD (lactate dehydrogenase gene) and lldP (lactate transporter gene). To facilitate extracellular electron transfer (EET) of S. oneidensis, a biosynthetic flavins pathway from Bacillus subtilis was expressed in a highly hydrophobic S. oneidensis CP-S1, which not only improved direct-contacted EET via enhancing S. oneidensis adhesion to the carbon electrode but also accelerated the flavins-mediated EET via increasing flavins synthesis. Furthermore, we optimized the ratio of glucose and xylose concentration to provide a stable carbon source supply in MFCs for higher power density. The glucose and xylose co-fed MFC inoculated with the recombinant consortium generated a maximum power density of 104.7 ± 10.0 mW/m2, which was 7.2-folds higher than that of the wild-type consortium (12.7 ± 8.0 mW/m2). Lastly, we used this synthetic microbial consortium in the corn straw hydrolyzates-fed MFC, obtaining a power density 23.5 ± 6.0 mW/m2

    Ordered Mesostructured CdS Nanowire Arrays with Rectifying Properties

    Get PDF
    Highly ordered mesoporous CdS nanowire arrays were synthesized by using mesoporous silica as hard template and cadmium xanthate (CdR2) as a single precursor. Upon etching silica, mesoporous CdS nanowire arrays were produced with a yield as high as 93 wt%. The nanowire arrays were characterized by XRD, N2adsorption, TEM, and SEM. The results show that the CdS products replicated from the mesoporous silica SBA-15 hard template possess highly ordered hexagonal mesostructure and fiber-like morphology, analogous to the mother template. The current–voltage characteristics of CdS nanoarrays are strongly nonlinear and asymmetrical, showing rectifying diode-like behavior

    Simulation Study of Microwave Ablation of Porous Lung Tissue

    No full text
    Microwave ablation, as an emerging method for treating lung cancer, has been widely used because of its advantages, such as being less invasive and having fewer side effects compared with other therapies, such as surgery and chemotherapy. The key to microwave ablation is to destroy the tumor tissue while minimizing the damage caused to the surrounding healthy tissues. Based on the heat transfer model of porous media, a two-dimensional simulation model of a spherical tumor surrounded by healthy tissue is established in this paper. The effects of tumor diameter, tumor porosity, and microwave ablation power on the highest temperature, ablation area, and volume of the tumor tissue were studied by using the software COMOSL Multiphysics. The results show that the porous heat transfer model is more practical than the Pennes biological heat transfer model. The tumor diameter and the tumor porosity have a great influence on the maximum temperature, the ablation area and volume. In this study, a more realistic model of microwave ablation of lung tumors was established, and the ablation results were predicted accurately, which provided the basic reference data for the selection of clinical therapeutic parameters of microwave ablation of lung tumors. To a certain extent, it can ensure that the ablation area completely covers the tumor and reduces the risk of tumor recurrence, which is of great significance in the accurate treatment of pulmonary tumors by microwave ablation
    corecore