19,210 research outputs found

    B→KB\to K Transition Form Factor with Tensor Current within the kTk_T Factorization Approach

    Full text link
    In the paper, we apply the kTk_T factorization approach to deal with the B→KB\to K transition form factor with tensor current in the large recoil regions. Main uncertainties for the estimation are discussed and we obtain FTB→K(0)=0.25±0.01±0.02F_T^{B\to K}(0)=0.25\pm0.01\pm0.02, where the first error is caused by the uncertainties from the pionic wave functions and the second is from that of the B-meson wave functions. This result is consistent with the light-cone sum rule results obtained in the literature.Comment: 8 pages, 4 figures, references adde

    Pressure Effect on the superconducting properties of LaO_{1-x}F_{x}FeAs(x=0.11) superconductor

    Full text link
    Diamagnetic susceptibility measurements under high hydrostatic pressure (up to 1.03 GPa) were carried out on the newly discovered Fe-based superconductor LaO_{1-x}F_{x}FeAs(x=0.11). The transition temperature T_c, defined as the point at the maximum slope of superconducting transition, was enhanced almost linearly by hydrostatic pressure, yielding a dT_c/dP of about 1.2 K/GPa. Differential diamagnetic susceptibility curves indicate that the underlying superconducting state is complicated. It is suggested that pressure plays an important role on pushing low T_c superconducting phase toward the main (optimal) superconducting phase.Comment: 7 pages, 4 figure

    Tidal resonance in the Gulf of Thailand

    Get PDF
    The Gulf of Thailand is dominated by diurnal tides, which might be taken to indicate that the resonant frequency of the gulf is close to one cycle per day. However, when applied to the gulf, the classic quarter-wavelength resonance theory fails to yield a diurnal resonant frequency. In this study, we first perform a series of numerical experiments showing that the gulf has a strong response near one cycle per day and that the resonance of the South China Sea main area has a critical impact on the resonance of the gulf. In contrast, the Gulf of Thailand has little influence on the resonance of the South China Sea main area. An idealized two-channel model that can reasonably explain the dynamics of the resonance affecting the Gulf of Thailand is then established in this study. We find that the resonant frequency around one cycle per day in the main area of the South China Sea can be explained with the quarter-wavelength resonance theory, and the large-amplitude response at this frequency in the Gulf of Thailand is basically a passive response of the gulf to the increased amplitude of the wave in the southern portion of the main area of the South China Sea.</p
    • …
    corecore