5,692 research outputs found
Interdependent network reciprocity in evolutionary games
Besides the structure of interactions within networks, also the interactions between networks are of the outmost
importance. We therefore study the outcome of the public goods game on two interdependent networks that are
connected by means of a utility function, which determines how payoffs on both networks jointly influence the
success of players in each individual network. We show that an unbiased coupling allows the spontaneous
emergence of interdependent network reciprocity, which is capable to maintain healthy levels of public
cooperation even in extremely adverse conditions. The mechanism, however, requires simultaneous formation of
correlated cooperator clusters on both networks. If this does not emerge or if the coordination process is
disturbed, network reciprocity fails, resulting in the total collapse of cooperation. Network interdependence can
thus be exploited effectively to promote cooperation past the limits imposed by isolated networks, but only if the
coordination between the interdependent networks is not disturbe
Wisdom of groups promotes cooperation in evolutionary social dilemmas
Whether or not to change strategy depends not only on the personal success of
each individual, but also on the success of others. Using this as motivation,
we study the evolution of cooperation in games that describe social dilemmas,
where the propensity to adopt a different strategy depends both on individual
fitness as well as on the strategies of neighbors. Regardless of whether the
evolutionary process is governed by pairwise or group interactions, we show
that plugging into the "wisdom of groups" strongly promotes cooperative
behavior. The more the wider knowledge is taken into account the more the
evolution of defectors is impaired. We explain this by revealing a dynamically
decelerated invasion process, by means of which interfaces separating different
domains remain smooth and defectors therefore become unable to efficiently
invade cooperators. This in turn invigorates spatial reciprocity and
establishes decentralized decision making as very beneficial for resolving
social dilemmas.Comment: 8 two-column pages, 7 figures; accepted for publication in Scientific
Report
Androgen-induced cerebral venous sinus thrombosis in a young body builder: case report
BACKGROUND: Cerebral venous sinus thrombosis is an infrequent disease with a variety of causes. Pregnancy, puerperium, contraceptive pills and intracranial infections are the most common causes. The patient may present with headache, focal neurological deficits and seizures. The clinical outcome is highly variable and treatment with heparin is advised. CASE PRESENTATION: The patient is a 22 year old male who presented with headache, repeated vomiting and papilledema. He was a bodybuilder doing exercise since 5 years ago, who had used nandrolone decaonoate 25 milligrams intramuscularly during the previous 5 months. Brain MRI and MRV showed superior sagital and transverse sinus thrombosis and extensive investigations did not reveal any known cause. CONCLUSIONS: We suggested that androgen was the predisposing factor in our patient. Androgens may increase coagulation factors or platelet activity and cause arterial or venous thrombosis. As athletes may hide using androgens it should be considered as a predisposing factor for thrombotic events in such patients
Stability Analysis of Frame Slotted Aloha Protocol
Frame Slotted Aloha (FSA) protocol has been widely applied in Radio Frequency
Identification (RFID) systems as the de facto standard in tag identification.
However, very limited work has been done on the stability of FSA despite its
fundamental importance both on the theoretical characterisation of FSA
performance and its effective operation in practical systems. In order to
bridge this gap, we devote this paper to investigating the stability properties
of FSA by focusing on two physical layer models of practical importance, the
models with single packet reception and multipacket reception capabilities.
Technically, we model the FSA system backlog as a Markov chain with its states
being backlog size at the beginning of each frame. The objective is to analyze
the ergodicity of the Markov chain and demonstrate its properties in different
regions, particularly the instability region. By employing drift analysis, we
obtain the closed-form conditions for the stability of FSA and show that the
stability region is maximised when the frame length equals the backlog size in
the single packet reception model and when the ratio of the backlog size to
frame length equals in order of magnitude the maximum multipacket reception
capacity in the multipacket reception model. Furthermore, to characterise
system behavior in the instability region, we mathematically demonstrate the
existence of transience of the backlog Markov chain.Comment: 14 pages, submitted to IEEE Transaction on Information Theor
Resolution of the stochastic strategy spatial prisoner's dilemma by means of particle swarm optimization
We study the evolution of cooperation among selfish individuals in the
stochastic strategy spatial prisoner's dilemma game. We equip players with the
particle swarm optimization technique, and find that it may lead to highly
cooperative states even if the temptations to defect are strong. The concept of
particle swarm optimization was originally introduced within a simple model of
social dynamics that can describe the formation of a swarm, i.e., analogous to
a swarm of bees searching for a food source. Essentially, particle swarm
optimization foresees changes in the velocity profile of each player, such that
the best locations are targeted and eventually occupied. In our case, each
player keeps track of the highest payoff attained within a local topological
neighborhood and its individual highest payoff. Thus, players make use of their
own memory that keeps score of the most profitable strategy in previous
actions, as well as use of the knowledge gained by the swarm as a whole, to
find the best available strategy for themselves and the society. Following
extensive simulations of this setup, we find a significant increase in the
level of cooperation for a wide range of parameters, and also a full resolution
of the prisoner's dilemma. We also demonstrate extreme efficiency of the
optimization algorithm when dealing with environments that strongly favor the
proliferation of defection, which in turn suggests that swarming could be an
important phenomenon by means of which cooperation can be sustained even under
highly unfavorable conditions. We thus present an alternative way of
understanding the evolution of cooperative behavior and its ubiquitous presence
in nature, and we hope that this study will be inspirational for future efforts
aimed in this direction.Comment: 12 pages, 4 figures; accepted for publication in PLoS ON
Modeling Bacterial DNA: Simulation of Self-avoiding Supercoiled Worm-Like Chains Including Structural Transitions of the Helix
Under supercoiling constraints, naked DNA, such as a large part of bacterial
DNA, folds into braided structures called plectonemes. The double-helix can
also undergo local structural transitions, leading to the formation of
denaturation bubbles and other alternative structures. Various polymer models
have been developed to capture these properties, with Monte-Carlo (MC)
approaches dedicated to the inference of thermodynamic properties. In this
chapter, we explain how to perform such Monte-Carlo simulations, following two
objectives. On one hand, we present the self-avoiding supercoiled Worm-Like
Chain (ssWLC) model, which is known to capture the folding properties of
supercoiled DNA, and provide a detailed explanation of a standard MC simulation
method. On the other hand, we explain how to extend this ssWLC model to include
structural transitions of the helix.Comment: Book chapter to appear in The Bacterial Nucleoid, Methods and
Protocols, Springer serie
Influence of the apical enlargement size on the endotoxin level reduction of dental root canals
Gram-negative bacteria play an essential role in endodontic infections because they have virulence factors such as endotoxin. Due to its potential cytotoxic activity, special attention has been given to the removal/neutralization of this endotoxin in the root canal system. OBJECTIVE: The aim of this study was to evaluate the influence of the apical enlargement size (AES) by using rotary instruments on the endotoxin level reduction of dental root canals. MATERIAL AND METHODS: Forty root canals of the mandibular premolar teeth were used. Escherichia coli endotoxin (055: B55) was inoculated into thirty root canals. Ten teeth served as the negative control group. After the incubation period, the first endotoxin samples were collected from the root canals with a sterile/apyrogenic paper point for the analysis of the endotoxin units (EU/mL) present before instrumentation (S1). Specimen instrumentation was performed with the Mtwo(®) rotary system in the sequence 10/.04, 15/.05, 20/.06, 25/.06, 30/.05, 35/.04 and 40/.04. To monitor the effectiveness of increasing apical enlargement on endotoxin removal, the second endotoxin samples were collected from all the root canals after instrumentation with the following instruments: #25/.06- (S2); #30/.05- (S3); # 35/.04- (S4); and #40/.04- (S5). Limulus amebocyte lysate (LAL) was used to quantify the levels of endotoxin. The results were statistically compared by using repeated measures of ANOVA with post hoc Tukey testing. RESULTS: Increasing levels of endotoxin removal was achieved by large sized apical enlargement: S2 (AES #25/.06)- 89.2%, S3 (AES #30/.05)- 95.9%, S4 (AES #35/.04)- 97.8% and S5 (AES #40/.04)- 98.2%. Substantial reduction of endotoxin content was obtained in S4 and S5 compared to S2 (p<0.05), however, the root canal preparation was not able to eliminate the endotoxin. CONCLUSIONS: Under the conditions of this study, it was concluded that the reduction of endotoxin levels of the dental root canals could be predicted by increasing the apical enlargement size
Rectification of electronic heat current by a hybrid thermal diode
We report the realization of an ultra-efficient low-temperature hybrid heat
current rectifier, thermal counterpart of the well-known electric diode. Our
design is based on a tunnel junction between two different elements: a normal
metal and a superconducting island. Electronic heat current asymmetry in the
structure arises from large mismatch between the thermal properties of these
two. We demonstrate experimentally temperature differences exceeding mK
between the forward and reverse thermal bias configurations. Our device offers
a remarkably large heat rectification ratio up to and allows its
prompt implementation in true solid-state thermal nanocircuits and
general-purpose electronic applications requiring energy harvesting or thermal
management and isolation at the nanoscale.Comment: 8 pages, 6 color figure
- …