101 research outputs found

    An Adaptive Method for Organization Name Disambiguation with Feature Reinforcing

    Get PDF

    Supervised and Semi-supervised Methods based Organization Name Disambiguity

    Get PDF

    Experimental investigation of the flame retardant and form-stable composite phase change materials for a power battery thermal management system

    Get PDF
    © 2020 Elsevier Ltd. All rights reserved. This manuscript is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence http://creativecommons.org/licenses/by-nc-nd/4.0/.An efficient battery thermal management system (BTMS) will undoubtedlypromote the performance and lifespan of battery packs. In this study, a novelflame-retarded composite PCMs composed by paraffin (PA), expanded graphite (EG), ammonium polyphosphate (APP), red phosphorus (RP) and epoxy resin (ER) has been proposed for battery module. The thermophysical and flame retardant properties are investigated at both macro and micro levels. The results show that the proposed composite PCMs with an APP/RP ratio of 23/10 exhibit the optimum flame retardant performance. Besides, the APP/RP-based composite PCMs for 18650 ternary battery module has also been researched comparing with air cooled and PCM with pure PA modes. The experimental results indicated that the fire retardant PCMs shown significant cooling and temperature balancing advantages for battery module, leading to a 44.7% and 30.1% reduction rate of the peak temperature and the maintenance of the maximum temperature difference within 1.36°C at a 3 C discharge rate for 25°C. Even at 45°C, the temperature uniformity can still be controlled within 5°C. Thus, this research indicates the composite PCM had good flame retardant and form stable properties, it would be utilized in BTMS, energy storage and other fields.Peer reviewe

    Structural Optimization and Thermal Management with PCM-Honeycomb Combination for Photovoltaic-Battery Integrated System

    Get PDF
    © 2022 Xinxi Li et al. This is an open access article distributed under the Creative Commons Attribution License, https://creativecommons.org/licenses/by/4.0/Power lithium–ion batteries retired from the electric vehicles (EVs) are confronting many problems such as environment pollution and energy dissipation. Traditional photovoltaic (PV) battery systems are exhibiting many issues such as being bulky and expensive, high working temperature, and short service span. In order to address these problems, in this study, a novel PV–battery device integrating PV controllers and battery module into an independent device is proposed. Phase change material (PCM) as the energy storage material has been utilized in battery module, and the aluminum honeycomb is combined with PCM to improve the heat conductivity under natural convection conditions. Three types of PV battery systems including the general PV–battery integrated system (G–PBIS), honeycomb PV–battery integrated system (H–PBIS), and honeycomb–paraffin PV–battery integrated system (HP–PBIS) have been investigated in detail. The results reveal that the maximum temperature of the HP–PBIS coupling with the double–layer 10×165×75 mm3 PCM was reduced to 53.72°C, exhibiting an optimum cooling effect among various PV battery systems. Thus, it can be concluded that the aluminum honeycomb provides the structural reliability and good thermal conductivity, and the PCM surrounding battery module can control the temperature rising and balance the temperature uniformly. Besides, the optimum PV–battery integrated system performs a promising future in energy storage fields.Peer reviewedFinal Published versio

    Decentralized Vehicle Coordination: The Berkeley DeepDrive Drone Dataset

    Full text link
    Decentralized multiagent planning has been an important field of research in robotics. An interesting and impactful application in the field is decentralized vehicle coordination in understructured road environments. For example, in an intersection, it is useful yet difficult to deconflict multiple vehicles of intersecting paths in absence of a central coordinator. We learn from common sense that, for a vehicle to navigate through such understructured environments, the driver must understand and conform to the implicit "social etiquette" observed by nearby drivers. To study this implicit driving protocol, we collect the Berkeley DeepDrive Drone dataset. The dataset contains 1) a set of aerial videos recording understructured driving, 2) a collection of images and annotations to train vehicle detection models, and 3) a kit of development scripts for illustrating typical usages. We believe that the dataset is of primary interest for studying decentralized multiagent planning employed by human drivers and, of secondary interest, for computer vision in remote sensing settings.Comment: 6 pages, 10 figures, 1 tabl

    Effect of Ultra-fast chilling on the expression of glycolytic enzymes in fresh mutton

    Get PDF
    The pH value, glucose content, glycolytic potential, and expression levels of five glycolytic enzymes in lamb longissimus dorsi muscle at different time after slaughter were compared and analyzed, which treated at different cooling rates and stored at different temperatures. The impact of two steps in the process of ultra-fast chilling on the expression levels of glycolytic enzymes was determined. The regulatory mechanism of ultra-fast chilling on the glycolytic rate was elucidated from the perspective of protein expression. The results showed that ultra-fast chilling treatment significantly delayed the decrease of pH and the increase of glycolytic rate, promoted the expression levels of aldolase (ALDOA), glycogen phosphorylase (PYGM), and triosephosphate isomerase (TPI1), and inhibited the expression levels of phosphofructokinase (PFKM) and phosphoglycerate kinase (PGK). After cooling treatment, refrigeration and controlled freezing-point storage delayed glycolysis by inhibiting the expression level of PGK, without altering the effect of ultra-fast chilling. The expression level of PFKM was positively correlated with the rate of glycolysis at different temperatures. It was found that different glycolytic enzymes had different responses to temperature changes. Ultra-fast chilling affected energy supply and demand by changing the expression of enzymes involved in glycolysis. The high expression level of PFKM was associated with fast glycolysis. PFKM can be regarded as a key enzyme in the ultra-fast chilling process

    QTL Mapping of Fiber-Related Traits Based on a High-Density Genetic Map in Flax (Linum usitatissimum L.)

    Get PDF
    A genetic map is an important and valuable tool for quantitative trait locus (QTL) mapping, marker-assisted selection (MAS)-based breeding, and reference-assisted chromosome assembly. In this study, 112 F2 plants from a cross between Linum usitatissimum L. “DIANE” and “NY17” and parent plants were subjected to high-throughput sequencing and specific-locus amplified fragment (SLAF) library construction. After preprocessing, 61.64 Gb of raw data containing 253.71 Mb paired-end reads, each 101 bp in length, were obtained. A total of 192,797 SLAFs were identified, of which 23,115 were polymorphic, with a polymorphism rate of 11.99%. Finally, 2,339 SLAFs were organized into a linkage map consisting of 15 linkage groups (LGs). The total length of the genetic map was 1483.25 centimorgans (cM) and the average distance between adjacent markers was 0.63 cM. Combined with flax chromosome-scale pseudomolecules, 12 QTLs associating with 6 flax fiber-related traits were mapped on the chromosomal scaffolds. This high-density genetic map of flax should serve as a foundation for flax fine QTL mapping, draft genome assembly, and MAS-guided breeding. Ultimately, the genomic regions identified in this research could potentially be valuable for improving flax fiber cultivars, as well as for identification of candidate genes involved in flax fiber formation processes.Significance statementA high-density genetic map of flax was constructed, and QTLs were identified on the sequence scaffolds to be interrelated with fiber-related traits. The results of this study will not only provide a platform for gene/QTL fine mapping, map-based gene isolation, and molecular breeding for flax, but also provide a reference to help position sequence scaffolds on the physical map and assist in the process of assembling the flax genome sequence

    Quantitative proteomics identification of phosphoglycerate mutase 1 as a novel therapeutic target in hepatocellular carcinoma

    Get PDF
    BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide with poor prognosis due to resistance to conventional chemotherapy and limited efficacy of radiotherapy. There is an urgent need to develop novel biomarkers for early diagnosis, as well as to identify new drug targets for therapeutic interventions. PATIENTS AND METHODS: 54 paired HCC samples and 21 normal liver tissues were obtained from West China Hospital of Sichuan University. Informed consent was obtained from all the patients or their relatives prior to analysis, and the project was approved by the Institutional Ethics Committee of Sichuan University. Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC)-based proteomics was employed to profile the differentially expressed proteins between a HepG2 human hepatoma cell line and an immortal hepatic cell line L02. Validation of PGAM1 expression was performed by semi-quantitative RT-PCR, immunoblot and immunohistochemistry using clinical samples. shRNA expressing plasmids specifically targeting PGAM1 were designed and constructed by GenePharma Corporation (Shanghai, China), and were utilized to silence expression of PGAM1 in vitro and in vivo. Cell proliferation was measured by a combination of colony formation assay and Ki67 staining. Apoptosis was examined by flow cytometry and TUNEL assay. RESULTS: A total of 63 dysregulated proteins were identified, including 51 up-regulated proteins, and 12 down-regulated proteins (over 2-fold, p < 0.01). Phosphoglycerate mutase 1 (PGAM1) was found markedly upregulated. Clinico-pathological analysis indicated that overexpression of PGAM1 was associated with 66.7% HCC, and strongly correlated with poor differentiation and decreased survival rates (p < 0.01). shRNAs-mediated repression of PGAM1 expression resulted in significant inhibition in liver cancer cell growth both in vitro and in vivo. CONCLUSION: Our studies suggested that PGAM1 plays an important role in hepatocarcinogenesis, and should be a potential diagnostic biomarker, as well as an attractive therapeutic target for hepatocellular carcinoma
    • …
    corecore