121,374 research outputs found

    Internal Energy of the Potts model on the Triangular Lattice with Two- and Three-body Interactions

    Full text link
    We calculate the internal energy of the Potts model on the triangular lattice with two- and three-body interactions at the transition point satisfying certain conditions for coupling constants. The method is a duality transformation. Therefore we have to make assumptions on uniqueness of the transition point and that the transition is of second order. These assumptions have been verified to hold by numerical simulations for q=2, 3 and 4, and our results for the internal energy are expected to be exact in these cases.Comment: 9 pages, 4 figure

    Multicritical Points of Potts Spin Glasses on the Triangular Lattice

    Full text link
    We predict the locations of several multicritical points of the Potts spin glass model on the triangular lattice. In particular, continuous multicritical lines, which consist of multicritical points, are obtained for two types of two-state Potts (i.e., Ising) spin glasses with two- and three-body interactions on the triangular lattice. These results provide us with numerous examples to further verify the validity of the conjecture, which has succeeded in deriving highly precise locations of multicritical points for several spin glass models. The technique, called the direct triangular duality, a variant of the ordinary duality transformation, directly relates the triangular lattice with its dual triangular lattice in conjunction with the replica method.Comment: 18 pages, 2, figure

    Quark deconfinement phase transition for improved quark mass density-dependent model

    Full text link
    By using the finite temperature quantum field theory, we calculate the finite temperature effective potential and extend the improved quark mass density-dependent model to finite temperature. It is shown that this model can not only describe the saturation properties of nuclear matter, but also explain the quark deconfinement phase transition successfully. The critical temperature is given and the effect of ω\omega- meson is addressed.Comment: 18 pages, 7 figure

    Lattice Statistics in Three Dimensions: Exact Solution of Layered Dimer and Layered Domain Wall Models

    Full text link
    Exact analyses are given for two three-dimensional lattice systems: A system of close-packed dimers placed in layers of honeycomb lattices and a layered triangular-lattice interacting domain wall model, both with nontrivial interlayer interactions. We show that both models are equivalent to a 5-vertex model on the square lattice with interlayer vertex-vertex interactions. Using the method of Bethe ansatz, a closed-form expression for the free energy is obtained and analyzed. We deduce the exact phase diagram and determine the nature of the phase transitions as a function of the strength of the interlayer interaction.Comment: 22 pages in Revtex, 6 PS files, submitted to PR
    • …
    corecore