50 research outputs found

    Financial Crimes in Web3-empowered Metaverse: Taxonomy, Countermeasures, and Opportunities

    Full text link
    At present, the concept of metaverse has sparked widespread attention from the public to major industries. With the rapid development of blockchain and Web3 technologies, the decentralized metaverse ecology has attracted a large influx of users and capital. Due to the lack of industry standards and regulatory rules, the Web3-empowered metaverse ecosystem has witnessed a variety of financial crimes, such as scams, code exploit, wash trading, money laundering, and illegal services and shops. To this end, it is especially urgent and critical to summarize and classify the financial security threats on the Web3-empowered metaverse in order to maintain the long-term healthy development of its ecology. In this paper, we first outline the background, foundation, and applications of the Web3 metaverse. Then, we provide a comprehensive overview and taxonomy of the security risks and financial crimes that have emerged since the development of the decentralized metaverse. For each financial crime, we focus on three issues: a) existing definitions, b) relevant cases and analysis, and c) existing academic research on this type of crime. Next, from the perspective of academic research and government policy, we summarize the current anti-crime measurements and technologies in the metaverse. Finally, we discuss the opportunities and challenges in behavioral mining and the potential regulation of financial activities in the metaverse. The overview of this paper is expected to help readers better understand the potential security threats in this emerging ecology, and to provide insights and references for financial crime fighting.Comment: 24pages, 6 figures, 140 references, submitted to the Open Journal of the Computer Societ

    Integrated energy system optimization and scheduling method considering the source and load coordinated scheduling of thermal-storage electric boilers and electric vehicles

    Get PDF
    The northern regions of China face the challenges of the mismatch of the power supply and demand, as well as serious wind curtailment issues, caused mainly by the limitation of the “with heat to determine electricity” mode for combined heat and power generation during the winter season. To further absorb the surplus wind power and alleviate restrictions, a comprehensive energy system optimization method for parks based on coordinated scheduling between sources and loads is proposed in this paper. First, the implementation of a heat-storage electric boiler on the source side further achieves the decoupling of heat and power. Second, an optimized scheduling method for electric vehicles combining incentive scheduling and orderly scheduling is proposed on the load side, which helps flatten the load curve. Finally, a tiered carbon trading mechanism is introduced and a community integrated energy system (CIES) optimization scheduling model is established with the aim of minimizing the total cost of the CIES, and the problem is solved using the CPLEX commercial solver. The simulation results indicate that the overall system efficiency is significantly improved through the coordinated scheduling of power sources and loads. Specifically, the integration rate of wind power increases by 3.91% when compared to the sole consideration of the integrated demand response. Furthermore, the peak shaving and off-peak filling effect is considerably enhanced compared to the utilization of only thermal-storage electric boilers. Additionally, the implementation of coordinated scheduling leads to a reduction in the total system cost by 2764.32 yuan and a decrease in total carbon emissions by 3515.4 kg. These findings provide compelling evidence that the coordinated scheduling of power sources and loads surpasses the limitations of thermal power units, strengthens the demand response capability of electric vehicles, and enhances the economic benefits of the CIES

    Identification of wheat stem rust resistance genes in wheat cultivars from Hebei province, China

    Get PDF
    Wheat stem rust is caused by Puccinia graminis f. sp. tritici. This major disease has been effectively controlled via resistance genes since the 1970s. The appearance and spread of new races of P. graminis f. sp. tritici (eg., Ug99, TKTTF, and TTRTF) have renewed the interest in identifying the resistance gene and breeding cultivars resistant to wheat stem rust. In this study, gene postulation, pedigree analysis, and molecular detection were used to determine the presence of stem rust resistance genes in 65 commercial wheat cultivars from Hebei Province. In addition, two predominant races 21C3CTHTM and 34MRGQM were used to evaluate the resistance of these cultivars at the adult-plant stage in 2021–2022. The results revealed that 6 Sr genes (namely, Sr5, Sr17, Sr24, Sr31, Sr32, Sr38, and SrTmp), either singly or in combination, were identified in 46 wheat cultivars. Overall, 37 wheat cultivars contained Sr31. Sr5 and Sr17 were present in 3 and 3 cultivars, respectively. Gao 5218 strong gluten, Jie 13-Ji 7369, and Kenong 1006 contained Sr24, Sr32, and Sr38, respectively. No wheat cultivar contained Sr25 and Sr26. In total, 50 (76.9%) wheat cultivars were resistant to all tested races of P. graminis f. sp. tritici in field test in 2021–2022. This study is important for breeding wheat cultivars with resistance to stem rust

    When Auditors Say 'No,' Does the Market Listen?

    Get PDF
    Previous research on whether the market responds to auditors' opinions has provided mixed results. We revisit this issue in China, where individual investors who are more likely to neglect value-relevant information dominate the stock market. In addition to going concern opinions (GCOs), China permits modified audit opinions (MAOs) on violations of accounting standards or disclosure rules (GAAP/DISC MAOs), providing an opportunity not available in the literature to enrich the study of audit-opinion pricing. We find that, ceteris paribus, MAO recipients underperform in the future and have a higher incidence of adverse outcomes such as misreporting and stock delisting, and the market reacts negatively to MAOs during the short window around MAO disclosure. Importantly, MAO disclosure is not followed by negative long-term stock returns, suggesting stock price adjustments to MAOs are speedy and unbiased. These findings hold for both GCOs and GAAP/DISC MAOs. Together, our findings support the informativeness of audit opinions and cast doubt on the argument that investors inefficiently price audit opinions due to information-processing bias

    A distributed parallel optimization algorithm via alternating direction method of multipliers

    No full text
    Abstract Alternating direction method of multipliers (ADMM) has been widely used for solving the distributed optimisation problems. This paper proposes a novel distributed ADMM algorithm to solve the distributed optimisation problems consisting of convex cost functions under an undirected connected graph. The proposed algorithm adopts the concepts of predecessors and successors in the distributed sequential ADMM algorithm, but changes the sequential updating manner to a parallel one, which allows the agents to update their local states and dual variables in a completely distributed and parallel manner. This brings some benefits when solving large‐scale optimisation problems. Variational inequality is applied to analyse the convergence of agents' states. It is proved that the states of all the agents converge to the optimal point, and the global cost function converge to the optimal value at a rate of O(1/k)O(1/k)O(1/k). Numerical experiments are given to show the effectiveness and suitability of the proposed algorithm

    A diode-pumped high-repetition-frequency passively Q-switched Nd:LaMgAl11O19 laser

    No full text
    High-repetition-frequency Q-switched laser is realized through adopting a Nd:LaMgAl11O19 (Nd:LMA) disordered crystal as the gain material, a laser diode lasing at 796 nm as the pumped source, and a semiconductor saturable absorber mirror (SESAM) as the Q-switched device. The out-put characteristics are analyzed under using different transmittance T plane mirrors as an output coupler. Without adopting SESAM, the laser is operating at a CW state, and a relatively high transmittance is helpful for achieving high output power, slope efficiency and light-to-light efficiency. ForT = 7.5% and an absorbed power of 6.17 W, the output power arrives at its maximum of 1160 mW,and the corresponding slope efficiency and light-to-light efficiency are 20.71% and 18.78%, respectively. After introducing SESAM into the cavity, the laser operates at a passively Q-switched state, and the largest slope efficiency is 13.14% under T = 5.0%. Adopting five different output couplers, with the increase of the absorbed power, the pulse repetition frequencies, the pulse energies and the peak powers will ascend while the pulse widths will decline. The observed narrowest pulse width, the maximum pulse repetition frequency, the highest pulse energy and peak power are 1.745 μs, 175.88 kHz, 3.21 μJ and 1.84 W, respectively

    Preparation and Thermal Model of Tetradecane/Expanded Graphite and A Spiral Wavy Plate Cold Storage Tank

    No full text
    A cold storage unit can store the cold energy off-peak and release it for building cooling on-peak, which can reduce the electricity load of air conditioning systems. n-tetradecane is a suitable cold storage material for air conditioning, with a phase change temperature of is 4–8 °C and a phase change enthalpy of 200 kJ/kg. However, its low thermal conductivity limits the application of n-tetradecane for high-power cold storage/release. This paper prepares a tetradecane/expanded graphite (EG) composite phase change material (CPCM), whose thermal conductivity can be increased up to 21.0 W/m·K, nearly 100 times over the raw n-tetradecane. A novel model to predict the maximum loading fraction of paraffin in the EG matrix is presented, with an error within 1.7%. We also develop a thermal conductivity model to predict the thermal conductivity of the CPCM precisely, with an error of less than 10%. In addition, an innovative spiral wave plate cold storage tank has been designed for the tetradecane/EG composite. The power and energy density of the cold storage tank are significantly improved compared to that of raw tetradecane. The energy density reaches 40 kWh/m3, which is high among the organic PCM thermal storage tank. This paper shows the significance of thermal conductivity enhancement in designing a cold storage tank
    corecore