11,015 research outputs found
Negative refraction index of the quantum lossy left-handed transmission lines affected by the displaced squeezed Fock state and dissipation
Quantum lossy left-handed transmission lines (LHTLs) are central to the
miniaturized application in microwave band. This work discusses the NRI of the
quantized lossy LHTLs in the presence of the resistance and the conductance in
a displaced squeezed Fock state (DSFS). And the results show some novel
specific quantum characteristics of NRI caused by the DSFS and dissipation,
which may be significant for its miniaturized application in a suit of novel
microwave devices.Comment: 11 pages,5 figure
Practical Block-wise Neural Network Architecture Generation
Convolutional neural networks have gained a remarkable success in computer
vision. However, most usable network architectures are hand-crafted and usually
require expertise and elaborate design. In this paper, we provide a block-wise
network generation pipeline called BlockQNN which automatically builds
high-performance networks using the Q-Learning paradigm with epsilon-greedy
exploration strategy. The optimal network block is constructed by the learning
agent which is trained sequentially to choose component layers. We stack the
block to construct the whole auto-generated network. To accelerate the
generation process, we also propose a distributed asynchronous framework and an
early stop strategy. The block-wise generation brings unique advantages: (1) it
performs competitive results in comparison to the hand-crafted state-of-the-art
networks on image classification, additionally, the best network generated by
BlockQNN achieves 3.54% top-1 error rate on CIFAR-10 which beats all existing
auto-generate networks. (2) in the meanwhile, it offers tremendous reduction of
the search space in designing networks which only spends 3 days with 32 GPUs,
and (3) moreover, it has strong generalizability that the network built on
CIFAR also performs well on a larger-scale ImageNet dataset.Comment: Accepted to CVPR 201
Backstepping controller design for a class of stochastic nonlinear systems with Markovian switching
A more general class of stochastic nonlinear systems with irreducible homogenous Markovian switching are considered in this paper. As preliminaries, the stability criteria and the existence theorem of strong solutions are first presented by using the inequality of mathematic expectation of a Lyapunov function. The state-feedback controller is designed by regarding Markovian switching as constant such that the closed-loop system has a unique solution, and the equilibrium is asymptotically stable in probability in the large. The output-feedback controller is designed based on a quadratic-plus-quartic-form Lyapunov function such that the closed-loop system has a unique solution with the equilibrium being asymptotically stable in probability in the large in the unbiased case and has a unique bounded-in-probability solution in the biased case
Non-perturbative Dynamical Decoupling Control: A Spin Chain Model
This paper considers a spin chain model by numerically solving the exact
model to explore the non-perturbative dynamical decoupling regime, where an
important issue arises recently (J. Jing, L.-A. Wu, J. Q. You and T. Yu,
arXiv:1202.5056.). Our study has revealed a few universal features of
non-perturbative dynamical control irrespective of the types of environments
and system-environment couplings. We have shown that, for the spin chain model,
there is a threshold and a large pulse parameter region where the effective
dynamical control can be implemented, in contrast to the perturbative
decoupling schemes where the permissible parameters are represented by a point
or converge to a very small subset in the large parameter region admitted by
our non-perturbative approach. An important implication of the non-perturbative
approach is its flexibility in implementing the dynamical control scheme in a
experimental setup. Our findings have exhibited several interesting features of
the non-perturbative regimes such as the chain-size independence, pulse
strength upper-bound, noncontinuous valid parameter regions, etc. Furthermore,
we find that our non-perturbative scheme is robust against randomness in model
fabrication and time-dependent random noise
Energy bands and Landau levels of ultracold fermions in the bilayer honeycomb optical lattice
We investigate the spectrum and eigenstates of ultracold fermionic atoms in
the bilayer honeycomb optical lattice. In the low energy approximation, the
dispersion relation has parabolic form and the quasiparticles are chiral. In
the presence of the effective magnetic field, which is created for the system
with optical means, the energy spectrum shows an unconventional Landau level
structure. Furthermore, the experimental detection of the spectrum is proposed
with the Bragg scattering techniques.Comment: To appear in Journal of Modern Optic
- …