124 research outputs found

    Semantic Image Synthesis via Adversarial Learning

    Full text link
    In this paper, we propose a way of synthesizing realistic images directly with natural language description, which has many useful applications, e.g. intelligent image manipulation. We attempt to accomplish such synthesis: given a source image and a target text description, our model synthesizes images to meet two requirements: 1) being realistic while matching the target text description; 2) maintaining other image features that are irrelevant to the text description. The model should be able to disentangle the semantic information from the two modalities (image and text), and generate new images from the combined semantics. To achieve this, we proposed an end-to-end neural architecture that leverages adversarial learning to automatically learn implicit loss functions, which are optimized to fulfill the aforementioned two requirements. We have evaluated our model by conducting experiments on Caltech-200 bird dataset and Oxford-102 flower dataset, and have demonstrated that our model is capable of synthesizing realistic images that match the given descriptions, while still maintain other features of original images.Comment: Accepted to ICCV 201

    Thermoelectric effect in high mobility single layer epitaxial graphene

    Full text link
    The thermoelectric response of high mobility single layer epitaxial graphene on silicon carbide substrates as a function of temperature and magnetic field have been investigated. For the temperature dependence of the thermopower, a strong deviation from the Mott relation has been observed even when the carrier density is high, which reflects the importance of the screening effect. In the quantum Hall regime, the amplitude of the thermopower peaks is lower than a quantum value predicted by theories, despite the high mobility of the sample. A systematic reduction of the amplitude with decreasing temperature suggests that the suppression of the thermopower is intrinsic to Dirac electrons in graphene.Comment: 5 pages, 4 figure

    Half integer quantum Hall effect in high mobility single layer epitaxial graphene

    Full text link
    The quantum Hall effect, with a Berry's phase of π\pi is demonstrated here on a single graphene layer grown on the C-face of 4H silicon carbide. The mobility is ∼\sim 20,000 cm2^2/V⋅\cdots at 4 K and ~15,000 cm2^2/V⋅\cdots at 300 K despite contamination and substrate steps. This is comparable to the best exfoliated graphene flakes on SiO2_2 and an order of magnitude larger than Si-face epitaxial graphene monolayers. These and other properties indicate that C-face epitaxial graphene is a viable platform for graphene-based electronics.Comment: Some modifications in the text and figures, 7 pages, 2 figure

    Overcoming Language Priors in Visual Question Answering via Distinguishing Superficially Similar Instances

    Full text link
    Despite the great progress of Visual Question Answering (VQA), current VQA models heavily rely on the superficial correlation between the question type and its corresponding frequent answers (i.e., language priors) to make predictions, without really understanding the input. In this work, we define the training instances with the same question type but different answers as \textit{superficially similar instances}, and attribute the language priors to the confusion of VQA model on such instances. To solve this problem, we propose a novel training framework that explicitly encourages the VQA model to distinguish between the superficially similar instances. Specifically, for each training instance, we first construct a set that contains its superficially similar counterparts. Then we exploit the proposed distinguishing module to increase the distance between the instance and its counterparts in the answer space. In this way, the VQA model is forced to further focus on the other parts of the input beyond the question type, which helps to overcome the language priors. Experimental results show that our method achieves the state-of-the-art performance on VQA-CP v2. Codes are available at \href{https://github.com/wyk-nku/Distinguishing-VQA.git}{Distinguishing-VQA}.Comment: Published in COLING 202

    Uncertainty-Aware Unlikelihood Learning Improves Generative Aspect Sentiment Quad Prediction

    Full text link
    Recently, aspect sentiment quad prediction has received widespread attention in the field of aspect-based sentiment analysis. Existing studies extract quadruplets via pre-trained generative language models to paraphrase the original sentence into a templated target sequence. However, previous works only focus on what to generate but ignore what not to generate. We argue that considering the negative samples also leads to potential benefits. In this work, we propose a template-agnostic method to control the token-level generation, which boosts original learning and reduces mistakes simultaneously. Specifically, we introduce Monte Carlo dropout to understand the built-in uncertainty of pre-trained language models, acquiring the noises and errors. We further propose marginalized unlikelihood learning to suppress the uncertainty-aware mistake tokens. Finally, we introduce minimization entropy to balance the effects of marginalized unlikelihood learning. Extensive experiments on four public datasets demonstrate the effectiveness of our approach on various generation templates1
    • …
    corecore