84 research outputs found

    QVRF: A Quantization-error-aware Variable Rate Framework for Learned Image Compression

    Full text link
    Learned image compression has exhibited promising compression performance, but variable bitrates over a wide range remain a challenge. State-of-the-art variable rate methods compromise the loss of model performance and require numerous additional parameters. In this paper, we present a Quantization-error-aware Variable Rate Framework (QVRF) that utilizes a univariate quantization regulator a to achieve wide-range variable rates within a single model. Specifically, QVRF defines a quantization regulator vector coupled with predefined Lagrange multipliers to control quantization error of all latent representation for discrete variable rates. Additionally, the reparameterization method makes QVRF compatible with a round quantizer. Exhaustive experiments demonstrate that existing fixed-rate VAE-based methods equipped with QVRF can achieve wide-range continuous variable rates within a single model without significant performance degradation. Furthermore, QVRF outperforms contemporary variable-rate methods in rate-distortion performance with minimal additional parameters.Comment: 7 pages, 6 figure

    Modeling Multi-wavelength Pulse Profiles of Millisecond Pulsar PSR B1821-24

    Full text link
    PSR B1821−-24 is a solitary millisecond pulsar (MSP) which radiates multi-wavelength pulsed photons. It has complex radio, X-ray and γ\gamma-ray pulse profiles with distinct peak phase-separations that challenge the traditional caustic emission models. Using the single-pole annular gap model with suitable magnetic inclination angle (α=40∘\alpha=40^\circ) and viewing angle (ζ=75∘\zeta=75^\circ), we managed to reproduce its pulse profiles of three wavebands. It is found that the middle radio peak is originated from the core gap region at high altitudes, and the other two radio peaks are originated from the annular gap region at relatively low altitudes. Two peaks of both X-ray and γ\gamma-ray wavebands are fundamentally originated from annular gap region, while the γ\gamma-ray emission generated from the core gap region contributes somewhat to the first γ\gamma-ray peak. Precisely reproducing the multi-wavelength pulse profiles of PSR B1821−-24 enables us to understand emission regions of distinct wavebands and justify pulsar emission models.Comment: Accepted for publication in Ap

    Learning Disentangled Feature Representation for Hybrid-distorted Image Restoration

    Full text link
    Hybrid-distorted image restoration (HD-IR) is dedicated to restore real distorted image that is degraded by multiple distortions. Existing HD-IR approaches usually ignore the inherent interference among hybrid distortions which compromises the restoration performance. To decompose such interference, we introduce the concept of Disentangled Feature Learning to achieve the feature-level divide-and-conquer of hybrid distortions. Specifically, we propose the feature disentanglement module (FDM) to distribute feature representations of different distortions into different channels by revising gain-control-based normalization. We also propose a feature aggregation module (FAM) with channel-wise attention to adaptively filter out the distortion representations and aggregate useful content information from different channels for the construction of raw image. The effectiveness of the proposed scheme is verified by visualizing the correlation matrix of features and channel responses of different distortions. Extensive experimental results also prove superior performance of our approach compared with the latest HD-IR schemes.Comment: Accepted by ECCV202
    • …
    corecore