5,587 research outputs found
Attention Clusters: Purely Attention Based Local Feature Integration for Video Classification
Recently, substantial research effort has focused on how to apply CNNs or
RNNs to better extract temporal patterns from videos, so as to improve the
accuracy of video classification. In this paper, however, we show that temporal
information, especially longer-term patterns, may not be necessary to achieve
competitive results on common video classification datasets. We investigate the
potential of a purely attention based local feature integration. Accounting for
the characteristics of such features in video classification, we propose a
local feature integration framework based on attention clusters, and introduce
a shifting operation to capture more diverse signals. We carefully analyze and
compare the effect of different attention mechanisms, cluster sizes, and the
use of the shifting operation, and also investigate the combination of
attention clusters for multimodal integration. We demonstrate the effectiveness
of our framework on three real-world video classification datasets. Our model
achieves competitive results across all of these. In particular, on the
large-scale Kinetics dataset, our framework obtains an excellent single model
accuracy of 79.4% in terms of the top-1 and 94.0% in terms of the top-5
accuracy on the validation set. The attention clusters are the backbone of our
winner solution at ActivityNet Kinetics Challenge 2017. Code and models will be
released soon.Comment: The backbone of the winner solution at ActivityNet Kinetics Challenge
201
- …