7,568 research outputs found

    Polarizing primordial gravitational waves by parity violation

    Full text link
    We study primordial gravitational waves (PGWs) in the Horava-Lifshitz (HL) theory of quantum gravity, in which high-order spatial derivative operators, including the ones violating parity, generically appear in order for the theory to be power-counting renormalizable and ultraviolet (UV) complete. Because of both parity violation and non-adiabatic evolution of the modes due to a modified dispersion relationship, a large polarization of PGWs becomes possible, and it could be well within the range of detection of the BB, TB and EB power spectra of the forthcoming cosmic microwave background (CMB) observations.Comment: revtex4, 3 figures. Phys. Rev. D87, 103512 (2013

    Beamformer Based on Quaternion Processes

    Get PDF
    In this chapter, the problem of quaternion beamformer based on linear and widely linear hypercomplex processing is investigated in scenarios, where there exist one signal and one interference that are uncorrelated. First, we introduce brief information about the quaternion algebra and a quaternion model of linear symmetric array with two-component electromagnetic (EM) vector-sensors is presented. Based on array’s quaternion model, a quaternion MVDR (QMVDR) beamformer is derived and its performance is analysed. Second, we propose the general expression of a quaternion semi-widely linear (QSWL) beamformer and derive its useful implementation and the array’s gain expression. Finally, we give the main results of Monte Carlo simulation

    Sequential Prediction of Social Media Popularity with Deep Temporal Context Networks

    Full text link
    Prediction of popularity has profound impact for social media, since it offers opportunities to reveal individual preference and public attention from evolutionary social systems. Previous research, although achieves promising results, neglects one distinctive characteristic of social data, i.e., sequentiality. For example, the popularity of online content is generated over time with sequential post streams of social media. To investigate the sequential prediction of popularity, we propose a novel prediction framework called Deep Temporal Context Networks (DTCN) by incorporating both temporal context and temporal attention into account. Our DTCN contains three main components, from embedding, learning to predicting. With a joint embedding network, we obtain a unified deep representation of multi-modal user-post data in a common embedding space. Then, based on the embedded data sequence over time, temporal context learning attempts to recurrently learn two adaptive temporal contexts for sequential popularity. Finally, a novel temporal attention is designed to predict new popularity (the popularity of a new user-post pair) with temporal coherence across multiple time-scales. Experiments on our released image dataset with about 600K Flickr photos demonstrate that DTCN outperforms state-of-the-art deep prediction algorithms, with an average of 21.51% relative performance improvement in the popularity prediction (Spearman Ranking Correlation).Comment: accepted in IJCAI-1
    • …
    corecore