75 research outputs found

    Ground state pairing correlations in the S4S_4 symmetric microscopic model for iron-based superconductors

    Full text link
    We present the ground state pairing correlations in the S4S_4 symmetric microscopic model for iron-based superconductors, computed with the constrained-path Monte Carlo method. For various electron fillings and interaction strengths, we find that the sxys_{xy} pairing dominates over other pairing correlations and is positive when the pair separation exceeds several lattice constants, whatever for iron pnictides and iron chlcogenides. These ground state properties, especially the long range part pairing correlations re-confirm the previous finite temperature results published in Phys. Rev. Lett. 110, 107002(2013). We further our study by including the nearest neighbour interaction VV and it is found that the sxys_{xy} pairing correlation is slightly suppressed by the increasing VV.Comment: 5 pages, 5 figures. arXiv admin note: text overlap with arXiv:1202.5881 by other author

    Robust Sequential DeepFake Detection

    Full text link
    Since photorealistic faces can be readily generated by facial manipulation technologies nowadays, potential malicious abuse of these technologies has drawn great concerns. Numerous deepfake detection methods are thus proposed. However, existing methods only focus on detecting one-step facial manipulation. As the emergence of easy-accessible facial editing applications, people can easily manipulate facial components using multi-step operations in a sequential manner. This new threat requires us to detect a sequence of facial manipulations, which is vital for both detecting deepfake media and recovering original faces afterwards. Motivated by this observation, we emphasize the need and propose a novel research problem called Detecting Sequential DeepFake Manipulation (Seq-DeepFake). Unlike the existing deepfake detection task only demanding a binary label prediction, detecting Seq-DeepFake manipulation requires correctly predicting a sequential vector of facial manipulation operations. To support a large-scale investigation, we construct the first Seq-DeepFake dataset, where face images are manipulated sequentially with corresponding annotations of sequential facial manipulation vectors. Based on this new dataset, we cast detecting Seq-DeepFake manipulation as a specific image-to-sequence task and propose a concise yet effective Seq-DeepFake Transformer (SeqFakeFormer). To better reflect real-world deepfake data distributions, we further apply various perturbations on the original Seq-DeepFake dataset and construct the more challenging Sequential DeepFake dataset with perturbations (Seq-DeepFake-P). To exploit deeper correlation between images and sequences when facing Seq-DeepFake-P, a dedicated Seq-DeepFake Transformer with Image-Sequence Reasoning (SeqFakeFormer++) is devised, which builds stronger correspondence between image-sequence pairs for more robust Seq-DeepFake detection.Comment: Extension of our ECCV 2022 paper: arXiv:2207.02204 . Code: https://github.com/rshaojimmy/SeqDeepFak

    Detecting and Grounding Multi-Modal Media Manipulation and Beyond

    Full text link
    Misinformation has become a pressing issue. Fake media, in both visual and textual forms, is widespread on the web. While various deepfake detection and text fake news detection methods have been proposed, they are only designed for single-modality forgery based on binary classification, let alone analyzing and reasoning subtle forgery traces across different modalities. In this paper, we highlight a new research problem for multi-modal fake media, namely Detecting and Grounding Multi-Modal Media Manipulation (DGM^4). DGM^4 aims to not only detect the authenticity of multi-modal media, but also ground the manipulated content, which requires deeper reasoning of multi-modal media manipulation. To support a large-scale investigation, we construct the first DGM^4 dataset, where image-text pairs are manipulated by various approaches, with rich annotation of diverse manipulations. Moreover, we propose a novel HierArchical Multi-modal Manipulation rEasoning tRansformer (HAMMER) to fully capture the fine-grained interaction between different modalities. HAMMER performs 1) manipulation-aware contrastive learning between two uni-modal encoders as shallow manipulation reasoning, and 2) modality-aware cross-attention by multi-modal aggregator as deep manipulation reasoning. Dedicated manipulation detection and grounding heads are integrated from shallow to deep levels based on the interacted multi-modal information. To exploit more fine-grained contrastive learning for cross-modal semantic alignment, we further integrate Manipulation-Aware Contrastive Loss with Local View and construct a more advanced model HAMMER++. Finally, we build an extensive benchmark and set up rigorous evaluation metrics for this new research problem. Comprehensive experiments demonstrate the superiority of HAMMER and HAMMER++.Comment: Extension of our CVPR 2023 paper: arXiv:2304.02556 Code: https://github.com/rshaojimmy/MultiModal-DeepFak

    AWEncoder: Adversarial Watermarking Pre-trained Encoders in Contrastive Learning

    Full text link
    As a self-supervised learning paradigm, contrastive learning has been widely used to pre-train a powerful encoder as an effective feature extractor for various downstream tasks. This process requires numerous unlabeled training data and computational resources, which makes the pre-trained encoder become valuable intellectual property of the owner. However, the lack of a priori knowledge of downstream tasks makes it non-trivial to protect the intellectual property of the pre-trained encoder by applying conventional watermarking methods. To deal with this problem, in this paper, we introduce AWEncoder, an adversarial method for watermarking the pre-trained encoder in contrastive learning. First, as an adversarial perturbation, the watermark is generated by enforcing the training samples to be marked to deviate respective location and surround a randomly selected key image in the embedding space. Then, the watermark is embedded into the pre-trained encoder by further optimizing a joint loss function. As a result, the watermarked encoder not only performs very well for downstream tasks, but also enables us to verify its ownership by analyzing the discrepancy of output provided using the encoder as the backbone under both white-box and black-box conditions. Extensive experiments demonstrate that the proposed work enjoys pretty good effectiveness and robustness on different contrastive learning algorithms and downstream tasks, which has verified the superiority and applicability of the proposed work.Comment: https://scholar.google.com/citations?user=IdiF7M0AAAAJ&hl=e
    • …
    corecore