1 research outputs found

    A nonlinear unsteady flexible wing theory

    Get PDF
    This paper extends a previous study by Wu (Adv. Appl. Mech. 2001; 38:291-353) to continue developing a fully non-linear theory for calculation of unsteady flow generated by a two-dimensional flexible lifting surface moving in arbitrary manner through an incompressible and inviscid fluid for modelling bird/insect flight and fish swimming. The original physical concept elucidated by von Kármán and Sears (J. Aeronau Sci. 1938; 5:379-390) in describing the complete vortex system of a wing and its wake in non-uniform motion for their linear theory is adapted and applied to a fully non-linear consideration. The new theory employs a joint Eulerian and Lagrangian description of the lifting-surface movement to facilitate the formulation. The present investigation presents further analysis for addressing arbitrary variations in wing shape and trajectory to achieve a non-linear integral equation akin to Wagner's (Z. Angew. Math. Mech. 1925; 5:17-35) linear version for accurate computation of the entire system of vorticity distribution
    corecore