2,596 research outputs found

    Differential geometric regularization for supervised learning of classifiers

    Full text link
    We study the problem of supervised learning for both binary and multiclass classification from a unified geometric perspective. In particular, we propose a geometric regularization technique to find the submanifold corresponding to an estimator of the class probability P(y|\vec x). The regularization term measures the volume of this submanifold, based on the intuition that overfitting produces rapid local oscillations and hence large volume of the estimator. This technique can be applied to regularize any classification function that satisfies two requirements: firstly, an estimator of the class probability can be obtained; secondly, first and second derivatives of the class probability estimator can be calculated. In experiments, we apply our regularization technique to standard loss functions for classification, our RBF-based implementation compares favorably to widely used regularization methods for both binary and multiclass classification.http://proceedings.mlr.press/v48/baia16.pdfPublished versio

    A Hierarchical Training Paradigm for Antibody Structure-sequence Co-design

    Full text link
    Therapeutic antibodies are an essential and rapidly expanding drug modality. The binding specificity between antibodies and antigens is decided by complementarity-determining regions (CDRs) at the tips of these Y-shaped proteins. In this paper, we propose a hierarchical training paradigm (HTP) for the antibody sequence-structure co-design. HTP consists of four levels of training stages, each corresponding to a specific protein modality within a particular protein domain. Through carefully crafted tasks in different stages, HTP seamlessly and effectively integrates geometric graph neural networks (GNNs) with large-scale protein language models to excavate evolutionary information from not only geometric structures but also vast antibody and non-antibody sequence databases, which determines ligand binding pose and strength. Empirical experiments show that HTP sets the new state-of-the-art performance in the co-design problem as well as the fix-backbone design. Our research offers a hopeful path to unleash the potential of deep generative architectures and seeks to illuminate the way forward for the antibody sequence and structure co-design challenge

    Integration of Pre-trained Protein Language Models into Geometric Deep Learning Networks

    Full text link
    Geometric deep learning has recently achieved great success in non-Euclidean domains, and learning on 3D structures of large biomolecules is emerging as a distinct research area. However, its efficacy is largely constrained due to the limited quantity of structural data. Meanwhile, protein language models trained on substantial 1D sequences have shown burgeoning capabilities with scale in a broad range of applications. Several previous studies consider combining these different protein modalities to promote the representation power of geometric neural networks, but fail to present a comprehensive understanding of their benefits. In this work, we integrate the knowledge learned by well-trained protein language models into several state-of-the-art geometric networks and evaluate a variety of protein representation learning benchmarks, including protein-protein interface prediction, model quality assessment, protein-protein rigid-body docking, and binding affinity prediction. Our findings show an overall improvement of 20% over baselines. Strong evidence indicates that the incorporation of protein language models' knowledge enhances geometric networks' capacity by a significant margin and can be generalized to complex tasks

    Quantifying the Knowledge in GNNs for Reliable Distillation into MLPs

    Full text link
    To bridge the gaps between topology-aware Graph Neural Networks (GNNs) and inference-efficient Multi-Layer Perceptron (MLPs), GLNN proposes to distill knowledge from a well-trained teacher GNN into a student MLP. Despite their great progress, comparatively little work has been done to explore the reliability of different knowledge points (nodes) in GNNs, especially their roles played during distillation. In this paper, we first quantify the knowledge reliability in GNN by measuring the invariance of their information entropy to noise perturbations, from which we observe that different knowledge points (1) show different distillation speeds (temporally); (2) are differentially distributed in the graph (spatially). To achieve reliable distillation, we propose an effective approach, namely Knowledge-inspired Reliable Distillation (KRD), that models the probability of each node being an informative and reliable knowledge point, based on which we sample a set of additional reliable knowledge points as supervision for training student MLPs. Extensive experiments show that KRD improves over the vanilla MLPs by 12.62% and outperforms its corresponding teacher GNNs by 2.16% averaged over 7 datasets and 3 GNN architectures

    Unveiling the Power of Mixup for Stronger Classifiers

    Full text link
    Mixup-based data augmentations have achieved great success as regularizers for deep neural networks. However, existing methods rely on deliberately handcrafted mixup policies, which ignore or oversell the semantic matching between mixed samples and labels. Driven by their prior assumptions, early methods attempt to smooth decision boundaries by random linear interpolation while others focus on maximizing class-related information via offline saliency optimization. As a result, the issue of label mismatch has not been well addressed. Additionally, the optimization stability of mixup training is constantly troubled by the label mismatch. To address these challenges, we first reformulate mixup for supervised classification as two sub-tasks, mixup sample generation and classification, then propose Automatic Mixup (AutoMix), a revolutionary mixup framework. Specifically, a learnable lightweight Mix Block (MB) with a cross-attention mechanism is proposed to generate a mixed sample by modeling a fair relationship between the pair of samples under direct supervision of the corresponding mixed label. Moreover, the proposed Momentum Pipeline (MP) enhances training stability and accelerates convergence on top of making the Mix Block fully trained end-to-end. Extensive experiments on five popular classification benchmarks show that the proposed approach consistently outperforms leading methods by a large margin.Comment: The second version of AutoMix. 12 pages, 7 figure
    • …
    corecore