2 research outputs found

    WuYun: Exploring hierarchical skeleton-guided melody generation using knowledge-enhanced deep learning

    Full text link
    Although deep learning has revolutionized music generation, existing methods for structured melody generation follow an end-to-end left-to-right note-by-note generative paradigm and treat each note equally. Here, we present WuYun, a knowledge-enhanced deep learning architecture for improving the structure of generated melodies, which first generates the most structurally important notes to construct a melodic skeleton and subsequently infills it with dynamically decorative notes into a full-fledged melody. Specifically, we use music domain knowledge to extract melodic skeletons and employ sequence learning to reconstruct them, which serve as additional knowledge to provide auxiliary guidance for the melody generation process. We demonstrate that WuYun can generate melodies with better long-term structure and musicality and outperforms other state-of-the-art methods by 0.51 on average on all subjective evaluation metrics. Our study provides a multidisciplinary lens to design melodic hierarchical structures and bridge the gap between data-driven and knowledge-based approaches for numerous music generation tasks

    ReLyMe: Improving Lyric-to-Melody Generation by Incorporating Lyric-Melody Relationships

    Full text link
    Lyric-to-melody generation, which generates melody according to given lyrics, is one of the most important automatic music composition tasks. With the rapid development of deep learning, previous works address this task with end-to-end neural network models. However, deep learning models cannot well capture the strict but subtle relationships between lyrics and melodies, which compromises the harmony between lyrics and generated melodies. In this paper, we propose ReLyMe, a method that incorporates Relationships between Lyrics and Melodies from music theory to ensure the harmony between lyrics and melodies. Specifically, we first introduce several principles that lyrics and melodies should follow in terms of tone, rhythm, and structure relationships. These principles are then integrated into neural network lyric-to-melody models by adding corresponding constraints during the decoding process to improve the harmony between lyrics and melodies. We use a series of objective and subjective metrics to evaluate the generated melodies. Experiments on both English and Chinese song datasets show the effectiveness of ReLyMe, demonstrating the superiority of incorporating lyric-melody relationships from the music domain into neural lyric-to-melody generation.Comment: Accepted by ACMMM 2022, ora
    corecore