23 research outputs found

    Collaborative MR Workspace with Shared 3D Vision Based on Stereo Video Transmission

    Get PDF
    P.R.China Mixed reality (MR) research aims to develop technologies that inputting or mixing the rea

    Cell Wall Invertase and Sugar Transporters Are Differentially Activated in Tomato Styles and Ovaries During Pollination and Fertilization

    Get PDF
    Flowering plants depend on pollination and fertilization to activate the transition from ovule to seed and ovary to fruit, namely seed and fruit set, which are key for completing the plant life cycle and realizing crop yield potential. These processes are highly energy consuming and rely on the efficient use of sucrose as the major nutrient and energy source. However, it remains elusive as how sucrose imported into and utilizated within the female reproductive organ is regulated in response to pollination and fertilization. Here, we explored this issue in tomato by focusing on genes encoding cell wall invertase (CWIN) and sugar transporters, which are major players in sucrose phloem unloading, and sink development. The transcript level of a major CWIN gene, LIN5, and CWIN activity were significantly increased in style at 4 h after pollination (HAP) in comparison with that in the non-pollination control, and this was sustained at 2 days after pollination (DAP). In the ovaries, however, CWIN activity and LIN5 expression did not increase until 2 DAP when fertilization occurred. Interestingly, a CWIN inhibitor gene INVINH1 was repressed in the pollinated style at 2 DAP. In response to pollination, the style exhibited increased expressions of genes encoding hexose transporters, SlHT1, 2, SlSWEET5b, and sucrose transporters SlSUT1, 2, and 4 from 4 HAP to 2 DAP. Upon fertilization, SlSUT1 and SlHT1 and 2, but not SlSWEETs, were also stimulated in fruitlets at 2 DAP. Together, the findings reveal that styles respond promptly and more broadly to pollination for activation of CWIN and sugar transporters to fuel pollen tube elongation, whereas the ovaries do not exhibit activation for some of these genes until fertilization occurs.HighlightsExpression of genes encoding cell wall invertases and sugar transporters was stimulated in pollinated style and fertilized ovaries in tomato

    Cross-Modal Learning Based on Semantic Correlation and Multi-Task Learning for Text-Video Retrieval

    No full text
    Text-video retrieval tasks face a great challenge in the semantic gap between cross modal information. Some existing methods transform the text or video into the same subspace to measure their similarity. However, this kind of method does not consider adding a semantic consistency constraint when associating the two modalities of semantic encoding, and the associated result is poor. In this paper, we propose a multi-modal retrieval algorithm based on semantic association and multi-task learning. Firstly, the multi-level features of video or text are extracted based on multiple deep learning networks, so that the information of the two modalities can be fully encoded. Then, in the public feature space where the two modalities information are mapped together, we propose a semantic similarity measurement and semantic consistency classification based on text-video features for a multi-task learning framework. With the semantic consistency classification task, the learning of semantic association task is restrained. So multi-task learning guides the better feature mapping of two modalities and optimizes the construction of unified feature subspace. Finally, the experimental results of our proposed algorithm on the Microsoft Video Description dataset (MSVD) and MSR-Video to Text (MSR-VTT) are better than the existing research, which prove that our algorithm can improve the performance of cross-modal retrieval

    The complete mitochondrial genome of the edible mushroom Pleurotus giganteus (Agaricales, Pleurotus) and insights into its phylogeny

    No full text
    Pleurotus giganteus (Berk.) Karunarathna & K.D. Hyde 2011 is one of the largest edible mushrooms integrating medicinal value and edible value. The complete mitochondrial genome of the edible fungus P. giganteus was published in this paper. It was determined using Pacbio and Illumina sequencing. The circular molecule is 102,950 bp in length, consisting of 30 protein-coding genes (PCGs), two ribosomal RNA (rRNA) genes, and 24 transfer RNA (tRNA) genes. The base composition of the whole mitogenome is A (37.3%), T (37.7%), G (12.2%), and C (12.8%). The phylogenetic tree shows P. giganteus was the basal taxon in Pleurotus and closely related to Pleurotus citrinopileatus Singer 1990

    Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Wiener Processes with Considering the Relaxation Effect

    No full text
    Remaining useful life (RUL) prediction has great importance in prognostics and health management (PHM). Relaxation effect refers to the capacity regeneration phenomenon of lithium-ion batteries during a long rest time, which can lead to a regenerated useful time (RUT). This paper mainly studies the influence of the relaxation effect on the degradation law of lithium-ion batteries, and proposes a novel RUL prediction method based on Wiener processes. This method can simplify the modeling complexity by using the RUT to model the recovery process. First, the life cycle of a lithium-ion battery is divided into the degradation processes that eliminate the relaxation effect and the recovery processes caused by relaxation effect. Next, the degradation model, after eliminating the relaxation effect, is established based on linear Wiener processes, and the model for RUT is established by using normal distribution. Then, the prior parameters estimation method based on maximum likelihood estimation and online updating method under the Bayesian framework are proposed. Finally, the experiments are carried out according to the degradation data of lithium-ion batteries published by NASA. The results show that the method proposed in this paper can effectively improve the accuracy of RUL prediction and has a strong engineering application value

    The Activity and Cyclic Catalysis of Synthesized Iron-Supported Zr/Ti Solid Acid Catalysts in Methyl Benzoate Compounds

    No full text
    The catalytic activity and cyclic catalysis of different methyl benzoates were studied by using a series of Lewis solid acid catalysts. The iron-supported zirconium/titanium solid acid catalysts were characterized using FTIR, SEM, XRD, and BET. The details of catalytic activity and cyclic catalysis verified that the catalyst catalyzed the reactions of 31 benzoic acids with different substituents and methanol. In addition, the mechanism was revealed according to the microstructure, acid strength, and specific surface area of the catalysts, and the yields of methyl benzoates by the GC-MS. Zr ions had significant effects on the catalytic activity of the catalyst. A certain proportion of Fe and Ti ions additionally enhanced the catalytic activity of the catalyst, with the catalyst-specific composition of Fe:Zr:Ti = 2:1:1 showing optimal catalytic activity. A variety of substituents in the benzene ring, such as the electron-withdrawing group, the electron-donating group, large steric hindrance, and the position of the group on the benzene ring, had regular effects on the catalytic activity of the methyl benzoates. An increase in the catalyst activity occurred owing to the increases in the catalyst surface and the number of acid sites after the Fe ion was added. The catalytic activity remained unchanged after the facile recycling method was performed

    POLYGONAL QUASICONFORMAL MAPPINGS AND CHORD-ARC CURVES

    No full text
    corecore