14 research outputs found

    Timing anthropogenic stressors to mitigate their impact on marine ecosystem resilience

    Full text link
    © 2017 The Author(s). Better mitigation of anthropogenic stressors on marine ecosystems is urgently needed to address increasing biodiversity losses worldwide. We explore opportunities for stressor mitigation using whole-of-systems modelling of ecological resilience, accounting for complex interactions between stressors, their timing and duration, background environmental conditions and biological processes. We then search for ecological windows, times when stressors minimally impact ecological resilience, defined here as risk, recovery and resistance. We show for 28 globally distributed seagrass meadows that stressor scheduling that exploits ecological windows for dredging campaigns can achieve up to a fourfold reduction in recovery time and 35% reduction in extinction risk. Although the timing and length of windows vary among sites to some degree, global trends indicate favourable windows in autumn and winter. Our results demonstrate that resilience is dynamic with respect to space, time and stressors, varying most strongly with: (i) the life history of the seagrass genus and (ii) the duration and timing of the impacting stress

    Comparative proteomic profiling reveals mechanisms for early spinal cord vulnerability in CLN1 disease

    Get PDF
    CLN1 disease is a fatal inherited neurodegenerative lysosomal storage disease of early childhood, caused by mutations in the CLN1 gene, which encodes the enzyme Palmitoyl protein thioesterase-1 (PPT-1). We recently found significant spinal pathology in Ppt1-deficient (Ppt1−/−) mice and human CLN1 disease that contributes to clinical outcome and precedes the onset of brain pathology. Here, we quantified this spinal pathology at 3 and 7 months of age revealing significant and progressive glial activation and vulnerability of spinal interneurons. Tandem mass tagged proteomic analysis of the spinal cord of Ppt1−/−and control mice at these timepoints revealed a significant neuroimmune response and changes in mitochondrial function, cell-signalling pathways and developmental processes. Comparing proteomic changes in the spinal cord and cortex at 3 months revealed many similarly affected processes, except the inflammatory response. These proteomic and pathological data from this largely unexplored region of the CNS may help explain the limited success of previous brain-directed therapies. These data also fundamentally change our understanding of the progressive, site-specific nature of CLN1 disease pathogenesis, and highlight the importance of the neuroimmune response. This should greatly impact our approach to the timing and targeting of future therapeutic trials for this and similar disorders

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Managing seagrass resilience under cumulative dredging affecting light: Predicting risk using dynamic Bayesian networks

    Full text link
    © 2017 The Authors. Journal of Applied Ecology © 2017 British Ecological Society Coastal development is contributing to ongoing declines of ecosystems globally. Consequently, understanding the risks posed to these systems, and how they respond to successive disturbances, is paramount for their improved management. We study the cumulative impacts of maintenance dredging on seagrass ecosystems as a canonical example. Maintenance dredging causes disturbances lasting weeks to months, often repeated at yearly intervals. We present a risk-based modelling framework for time varying complex systems centred around a dynamic Bayesian network (DBN). Our approach estimates the impact of a hazard on a system's response in terms of resistance, recovery and persistence, commonly used to characterise the resilience of a system. We consider whole-of-system interactions including light reduction due to dredging (the hazard), the duration, frequency and start time of dredging, and ecosystem characteristics such as the life-history traits expressed by genera and local environmental conditions. The impact on resilience of dredging disturbances is evaluated using a validated seagrass ecosystem DBN for meadows of the genera Amphibolis (Jurien Bay, WA, Australia), Halophila (Hay Point, Qld, Australia) and Zostera (Gladstone, Qld, Australia). Although impacts varied by combinations of dredging parameters and the seagrass meadows being studied, in general, 3 months of duration or more, or repeat dredging every 3 or more years, were key thresholds beyond which resilience can be compromised. Additionally, managing light reduction to less than 50% can significantly decrease one or more of loss, recovery time and risk of local extinction, especially in the presence of cumulative stressors. Synthesis and applications. Our risk-based approach enables managers to develop thresholds by predicting the impact of different configurations of anthropogenic disturbances being managed. Many real-world maintenance dredging requirements fall within these parameters, and our results show that such dredging can be successfully managed to maintain healthy seagrass meadows in the absence of other disturbances. We evaluated opportunities for risk mitigation using time windows; periods during which the impact of dredging stress did not impair resilience
    corecore