47 research outputs found

    ANALYSIS OF THE MECHANISMS OF HEPACAM-MEDIATED TUMOUR SUPPRESSION

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Aberrant neural activity in patients with bipolar depressive disorder distinguishing to the unipolar depressive disorder: a resting-state functional magnetic resonance imaging study

    Full text link
    This study aims to explore the intrinsic patterns of spontaneous activity of bipolar depression (BD) patients by analyzing the fractional amplitude of low frequency fluctuation (fALFF) that help differentiate BD from unipolar depressive disorder(UD). Twenty eight patients with BD, 47 patients with UD and 29 healthy controls were enrolled to receive the resting-state functional magnetic resonance imaging (rs-fMRI) scans. The group differences of fALFF values were calculated among three groups. In addition, the correlations between the clinical variables and mfALFF values were estimated. The brain regions with activation discrepancies among three groups are located in precuneus, the left middle temporal gyrus (MTG) and left inferior parietal lobe (IPL) and lingual gyrus. Compared with HC group, BD group shows decreased fALFF in precuneus, the left IPL and increased fALFF in lingual gyrus remarkably; UD group shows significantly decreased fALFF in precuneus, the left MTG and the left IPL. On the contrast of patients with UD, patients with BD have significantly increased fALFF value in the left precuneus, the left MGT and lingual gyrus. Furthermore, a negative correlation is found between the mfALFF values in precuneus and the scores of cognitive impairment factor in the UD group. The similar pattern of intrinsic activity in PCC suggests depressive state-dependent change. The aberrant patterns of intrinsic activity in precuneus, the IPL and lingual gyrus might be provide quantitative nodes that help to conduct further study for better distinguishing between BD and UD

    Reasonable deep application of sheep manure fertilizer to alleviate soil acidification to improve tea yield and quality

    Get PDF
    Soil acidification in Chinese tea plantations is widespread, and it has significantly affected the growth of tea trees; it was important to explore soil remediation of acidified tea plantations in depth for the sustainable development of tea industry. In this study, the effects of sheep manure fertilizer with different application depths on soil acidification, tea yield and quality, and soil nitrogen transformation in tea plantations were analyzed for five consecutive years from 2018 to 2022. The results showed that long-term use of sheep manure fertilizer significantly reduced soil acidification (P< 0.05) in tea plantations, improved soil pH and soil ammonium nitrogen content, enhanced root activity and root nitrogen uptake capacity of tea trees, and thus improved tea yield and quality. The effect of different application depths of sheep manure fertilizer on tea yield and quality was mainly reflected in the transformation ability of soil ammonium nitrogen and nitrate nitrogen, which showed that high transformation ability of soil ammonium nitrogen and high ammonium nitrogen content were beneficial to high tea yield and vice versa, and the best effect was achieved when sheep manure was applied at a depth of 50 cm and 70 cm. The topsis analysis confirmed that sheep manure fertilization had a greater effect on root activity, ammonium nitrogen, ammonia intensity, and nifH gene. This study provided an important practical basis for the restoration of acidified tea plantation soil through sheep manure fertilizer management

    Anti-CD137 Cancer Immunotherapy Suppresses Tumor Growth-Letter

    No full text
    10.1158/0008-5472.CAN-17-2997CANCER RESEARCH7861571-157

    Effects of impregnation combined heat treatment on the pyrolysis behavior of poplar wood.

    No full text
    To investigate the effects of urea-formaldehyde (UF) resin impregnation combined heat treatment (IMPG-HT) on the pyrolysis behavior of poplar wood, the chemical composition, pyrolysis characteristics, pyrolysis kinetics, and gaseous products released during pyrolysis of untreated (control), IMPG-HT, IMPG and HT woods were analyzed. The results demonstrate that IMPG-HT changes pyrolysis behavior of poplar wood significantly. Unlike the control and HT samples, the thermogravimetric / derivative thermogravimetric (TG/DTG) curves of IMPG wood shift toward lower temperature, and the shoulder on DTG curves weaken or even disappear. The maximum mass loss rate of IMPG-HT samples decreases, and carbon residual yield increases to 23% or more and activation energy (E) increases sharply after conversion rate (α) reaching 0.80. HT improves the thermal stability of IMPG wood, which is represented by the increase of decomposition temperature (Td) and DTG peak temperature (Tpeak) and the higher E value of IMPG-HT wood. For the pyrolysis gaseous products, IMPG-HT wood produces nitrogen-containing gases (HNCO and NH3) due to the presence of UF resin, but the amounts of these gases are less than that produced by IMPG wood because the heat treatment had removed part of N elements

    Induction of CD137 expression by viral genes reduces T cell costimulation

    No full text
    10.1002/jcp.28710JOURNAL OF CELLULAR PHYSIOLOGY2341121076-2108

    An integrated energy system optimization strategy based on particle swarm optimization algorithm

    No full text
    For the sake of increasing the energy efficiency of the city’s energy supply, it is an effective approach to adopt the joint planning of the integrated energy system employing a group of cooling heat and power. However, the coupling matrix in the integrated energy system is quite difficult to formulate. In this paper, a standardized construction method for modeling Energy Hub is proposed. The construction of the model is divided into several steps. In addition, the difficult of solving the coupling matrix of integrated energy system can be availably reduced through this method. Considering the nonlinear problem caused by dispatch factors, this paper proposes a comprehensive energy system optimization strategy by using improved particle swarm optimization algorithm. Finally, using an example of a residential area with cooling, heating and electricity system to verify the effectiveness of the proposed modeling and calculation method . At the same time, the influence of demand response and energy storage on economy during operation is analyzed

    Development of Environmentally Friendly Wool Shrink-Proof Finishing Technology Based on L-Cysteine/Protease Treatment Solution System

    No full text
    The particular scale structure and mechanical properties of wool fiber make its associated fabrics prone to felting, seriously affecting the service life of wool products. Although the existing Chlorine–Hercosett treatment has a remarkable effect, it can lead to environmental pollution. Therefore, it is of great significance to develop an environmentally friendly and effective shrink-proof finishing technology. For this study, L-cysteine was mixed with protease to form a treatment solution system for shrink-proof finishing of wool fibers. The reduction performance of L-cysteine and its effect on wool were compared with those of other reagents, demonstrating that L-cysteine has an obvious reduction and destruction effect on the wool scale layer. Based on this, L-cysteine and protease 16L were mixed in a certain proportion to prepare an L-cysteine/protease treatment solution system (L/PTSS). The shrink-proof finishing of a wool top was carried out by the continuous multiple-padding method, and the processing parameters were optimized using the response surface method. The results indicated that when the concentrations of L-cysteine and protease 16L were 9 g/L and 1 g/L, respectively, the wool was padded five times at 50 °C, and each immersion time was 30 s, the felt ball density of the treated wool reduced from 135.86 kg/m3 to 48.65 kg/m3. The structure and properties of the treated wool were also characterized using SEM, TG, and tensile strength tests, which indicated that the fiber scale structure was stripped evenly. Meanwhile, the treated fibers still retained adequate thermal and mechanical properties, indicating suitable application value. XPS, FT-IR, Raman, UV absorbance, and other test results revealed the reaction mechanism of L/PTSS with the wool fibers. After L-cysteine rapidly reduced the disulfide bonds in wool, protease can hydrolyze peptide chains more effectively, causing the scale layer to gradually peel off. Compared with the chlorination method and other protease shrink-proof technologies, L/PTSS can achieve the finishing effect on wool rapidly and effectively, without causing excessive pollution to the environment. The conclusions of this study provide a foundation for the development and industrial application of biological enzyme shrink-proof finishing technology
    corecore